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Agenda

e Partl: Introduction and Motivation
o Motivation, Definitions, Properties, Evaluation

o Challenges for Explainable Al @ Scale

e Part Il: Explanation in Al (not only Machine Learning!)

o From Machine Learning to Knowledge Representation and Reasoning and Beyond

e Part lll: Explainable Machine Learning (from a Machine Learning Perspective)
e Part IV: Explainable Machine Learning (from a Knowledge Graph Perspective)

e PartV: Case Studies from Industry

o Applications, Lessons Learned, and Research Challenges
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Al Adoption: Requirements
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Introduction and Motivation



Explanation - From a Business Perspective



Business to Customer Al

NETFLI)

Y TN 3
| A

L W
( -~ ‘a{*{‘ > PR
i M &N

I B%ﬂ’"“ﬂaﬂ i, P

Gary Chavez added a photo you might ...
be in.
about a minute ago - a




f
|

A\



e’

~ Critical Sy

-




When a Computer

Program Keeps You in Jail

f oy o= oA

DYLAN FUGETT BERNARD PARKER
Prior Offense Prior Offense
1attempted burglary 1resisting arrest ?9
without violence
Subsequent Offenses
1 drug possessions Subsequent Offenses
| None
LOW RISK 3 HGHrisk 10

Fugett was rated low risk after being arrested with cocaine and
marijuana. He was arrested three times on drug charges after that.




... but not only Critical Systems (2)
Finance: = FICO

CYMMUNITY

e Credit scoring, loan approval

e Insurance quotes W.l}i‘ a .f‘

1able Machine Learning Challer

/. .

community.fico.com/s/explainable-machine-learning-challenge
The Big Read Artificial intelligence + Add to myFT

Insurance: Robots learn the
business of covering risk

Artificial intelligence could revolutionise the industry but may also allow
clients to calculate if they need protection

’ 'F in m Save

Oliver Ralph MAY 16, 2017 D 24

https://www.ft.com/content/e07cee0c-3949-11e7-821a-6027b8a20f23



... but not only Critical Systems (3)

Healthcare

e Applying ML methods in medical care
is problematic.

e Al as 3"%party actor in
physician-patient relationship

® Responsibility, confidentiality?

e Learning must be done with available
data.

e Must validate models before use.

P Stanford

MEDICINE | NewsCenter
(ol B o e

Researchers say use of artificial intelligence in medicine raises
ethical questions

In a perspective piece, Stanford researchers discuss the ethical implications of using
machine-learning tools in making health care decisions for patients.

Patricia Hannon

,https://med.stanford.edu/news/all-news/2018/03/researchers-say-use-of-ai-in-medicine-raises-ethical-qu
estions.html

Intelligible Models for HealthCare: Predicting Pneumonia
Risk and Hospital 30-day Readmission

Rich Caruana Yin Lou Johannes Gehrke
Microsoft Research LinkedIn Corporation . Microsoft
rcaruana@microsoft.com ylou@linkedin.com johannes@microsoft.com
Paul Koch Marc Sturm Noémie Elhadad
Microsoft Research NewYork-Presbyterian Hospital Columbia University
paulkoch@microsoft.com mas9161@nyp.org  noemie.elhadad@columbia.edu

Rich Caruana, Yin Lou, Johannes Gehrke, Paul Koch, Marc Sturm, Noemie Elhadad: Intelligible Models
for HealthCare: Predicting Pneumonia Risk and Hospital 30-day Readmission. KDD 2015: 1721-1730



Black-box Al creates business risk for Industry

Bloomberg Businessweek

"l MIT News

Apple Card’s Gender-Bias 1

Claims Look Familiar to Old- } \\Q

School Banks
Updated on November 12, 2019, 4:23 AM

Study finds gender and skin-
type bias in commercial
Al systems

Feb 12, 2018

E Missouri S&T News and Research

BEENEWS 22 an®
Tay: Microsoft issues apology After Uber, Tesla incidents, 5y 5’“
over racist chatbot fiasco can artificial intelligence be e
trusted? {oim= mme g
Sep 22, 2017 ARR

Apr 10, 2018

Guilty! Al Is Found to
Perpetuate Biases in Jailing

1 day ago




Black-box Al creates confusion and doubt

9 " Can I trust our Al

‘ ‘t decisions?
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[ Z\Lf::)fsl_zrr:lgettlng this 1 xx/ ..\, How do I answer this :
stor: - . customer complaint?

\ ¢/> " Howdo I monitorand
&»o( Poor Decision Black-box x‘ . debug this model? :

A| |_|_ & Operatlons ........................................
[ e )
How canl geta * ‘ ~:.. Is this the best model :
better decision? x . that can be built? :
. Data Scientists BT .

t = . Are these Al system
x " decisions fair?

Internal Audit, Regulators'



Explanation - From a Model Perspective
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Why Explainability: Debug (Mis-)Predictions

Top label: “clog”

Why did the network label this
image as “clog”?

17



Why Explainability: Improve ML Model

Standard ML Interpretable ML
model/data
- - improvement
o ESI
1
=
i| B
Q
o
.................... wv
s : £
ML ML . interpre- =
model model | i tability g
: s <
T .
Y Y
predictions verified predictions
Generalization error Generalization error + human experience

18
Credit: Samek, Binder, Tutorial on Interpretable ML, MICCAI'18



Why Explainability: Verify the ML Model / System

Wrong decisions can be costly
and dangerous

“Autonomous car crashes,
because it wrongly recognizes ...”

“Al medical diagnosis system
misclassifies patient’s disease s
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19
Credit: Samek, Binder, Tutorial on Interpretable ML, MICCAI'18



Why Explainability: Learn New Insights

“It's not a human move. I've _
Old promise:

never seen a human play this - o
move.” (Fan Hui) Learn about the human brain.

& 34 o4 4 M B i 14
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20
Credit: Samek, Binder, Tutorial on Interpretable ML, MICCAI'18



Why Explainability: Learn Insights in the Sciences

Learn about the physical / biological / chemical mechanisms.

(e.g. find genes linked to cancer, identify binding sites ...)
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Explanation - From a Regulatory Perspective

22



Why Explainability: Laws against Discrimination

Citizenship

Immigration Reform and Control Act

Age
Age Discrimination in Employment Act
of 1967

Sex

Equal Pay Act of 1963;
Civil Rights Act of 1964

Disability status

Rehabilitation Act of 1973;
Americans with Disabilities Act
of 1990

Race
Civil Rights Act of 1964

And more... -



SR 11-7: Guidance on Model Risk Management

BOARD OF GOVERNORS

OF GOVz, -
[ J 4 [J
OF THE FEDERAL RESERVE SYSTEM
AN WASHINGTON, D.C. 20551
&
S

Transparenc CALIFORNIA Explainability

y ACT OF 2018
24




GDPR Concerns Around Lack of Explainability in Al

“ @ e

. . . You have the right to be informed about
Companies should commit to ensuring an automated decision and ask for a
systems that could fall under GDPR, including human being to review it, for example if
Al, will be compliant. The threat of sizeable your online credit application is refused.
fines of €20 million or 4% of global turnover #EUdataP #GDPR #Al #digitalrights

provides a sharp incentive #EUandMe europa.eu/!InN77Dd

Article 22 of GDPR empowers individuals with

the right to demand an explanation of how Sironaeua IErotertion

an Al system made a decision that affects e e
- be forgotten
. dat
them' . ::?ov\nel \Z/(:l'.llcrh gaia is collected about you,
if your data has been leaked or hacked
,, - be informed about automated decisions

8:30 AM - 7 Sep 2018

- European Commision .
VP, European Commision




Article 22. Automated individual decision making, including profiling

. The data subject shall have the right not to be subject to a decision based solely on automated processing, including profiling,
which produces legal effects concerning him or her or similarly significantly affects him or her.

. Paragraph 1 shall not apply if the decision:

(a) is necessary for entering into, or performance of, a contract between the data subject and a data controller;

(b) is authorised by Union or Member State law to which the controller is subject and which also lays down suitable measures
to safeguard the data subject’s rights and freedoms and legitimate interests; or

(c) is based on the data subject’s explicit consent.

. In the cases referred to in points (a) and (c) of paragraph 2, the data controller shall implement suitable measures to safeguard
the data subject’s rights and freedoms and legitimate interests, at least the right to obtain human intervention on the part of the
controller, to express his or her point of view and to contest the decision.

. Decisions referred to in paragraph 2 shall not be based on special categories of personal data referred to in Article 9(1), unless
point (a) or (g) of Article 9(2) apply and suitable measures to safeguard the data subject’s rights and freedoms and legitimate
interests are in place.

26




Recital 71
Profiling™
F a i ' The data subject should have the right not to be subject to a decision, which may include a cy
measure, evaluating personal aspects relating to him or her which is based solely on automated
processing and which produces legal effects concerning him or her or similarly significantly
affects him or her, such as automatic refusal of an online credit application or e-recruiting
practices without any human intervention. Z Such processing includes ‘profiling’ that consists of
any form of automated processing of personal data evaluating the personal aspects relating to a
natural person, in particular to analyse or predict aspects concerning the data subject’s
performance at work, economic situation, health, personal preferences or interests, reliability or

behaviour, location or movements, where it produces legal effects concerning him or her or
similarly significantly affects him or her. ° However, decision-making based on such processing,

Transparenc Explainability
y 27



Why Explainability: Growing Global Al Regulation

e GDPR: Article 22 empowers individuals with the right to demand an explanation of how an
automated system made a decision that affects them.

e  Algorithmic Accountability Act 2019: Requires companies to provide an assessment of the risks posed by
the automated decision system to the privacy or security and the risks that contribute to inaccurate, unfair,
biased, or discriminatory decisions impacting consumers

e California Consumer Privacy Act: Requires companies to rethink their approach to capturing,
storing, and sharing personal data to align with the new requirements by January 1, 2020.

e  Washington Bill 1655: Establishes guidelines for the use of automated decision systems to protect
consumers, improve transparency, and create more market predictability.

e Massachusetts Bill H.2701: Establishes a commission on automated decision-making,
transparency, fairness, and individual rights.

e lllinois House Bill 3415: States predictive data analytics determining creditworthiness or hiring
decisions may not include information that correlates with the applicant race or zip code.



SR 11-7 and OCC regulations for Financial Institutions

SR 11-7: Guidance on Model Risk Management

What's driving Stress Testing and Model Risk Management efforts?

Regulatory efforts
SR 11-7 says “Banks benefit from conducting model stress
testing to check performance over a wide range of inputs and

parameter values, including extreme values, to verify that the
model is robust”

In fact, SR14-03 explicitly calls for all models used for Dodd-
Frank Act Company-Run Stress Tests must fall under the
purview of Model Risk Management.

In addition SR12-07 calls for incorporating validation or other
type of independent review of the stress testing framework to
ensure the integrity of stress testing processes and results.

BOARD OF GOVERNORS
OF THE FEDERAL RESERVE SYSTEM
WASHINGTON, D.C. 20551

JOHN HILL

GLOBAL HEAD OF MODEL RISK GOVERNANCE, CREDIT SUISSE

I1 In the current regulatory environment, model
validation policies must be fully compliant with the
requirements of SR11-7. While SR11-7 officially

applies to US conforming bank and non-US banks
doing business in the US, many European financial
firms have adopted SR11-7 as their standard as well. Jf



Explainability by Design” for Al products

________ Model Debugging
|
1 Feedback Loop
N o e e oo o = -
Model Diagnostics ‘

Root Cause Analytics

Model Visualization }
ap Train J
Ed
*? Debug
( QD

7
. . \

Performance monitoring

Fairness monitoring

.||I Monitor

( Model Evaluation

Comphance Testing

»’,
{ B A/B Test
[ Model Comparison

Cohort Analysis

} l\/lodel Launch Signoff
‘\‘ O Deploy Model Release Mgmt }
Y
J @ Predict

Explamable Decisions
LAPI Support




Al @ Scale - Challenges for Explainable Al

31



LinkedIn operates the largest professional
network on the Internet

645M+ members

3t ~

48
g e \ =/
30M+

Studios &t Monterey o companies are
San Francisco, California Skl”S ||Sted p
represented

More... on LinkedIn

I'm an International Educator who took the leap from
education to tech to pursue my interest in recruiting
and my passion for diversity and inclusion. | thrive i...

Contact info Connections (500+) 1 '

Heather Frank ;8% . 1st

Business Recruiting at LinkedIn
35K+

LinkedIn « Middlebury Institute of International

| soowill 280B
20M+
open jobs 90K+ Feed updates
on LinkedIn schools listed
Jobs (high school &

college)




Al SERVICES
VISION SPEECH
o [=h

Amazon Amazon  Amazon
Rekognition Polly Transcribe

NEW

+Medical

ML SERVICES

@ Amazon SageMaker

The AWS ML Stack

Broadest and most complete set of Machine Learning capabilities

ML FRAMEWORKS & INFRASTRUCTURE

NEW

?TensorFIow m
PYTHRCH
aWS machine

N > learning

CONTACT CENTERS

TEXT SEARCH NEW CHATBOTS PERSONALIZATION FORECASTING FRAUD NeW DEVELOPMENT NEW T
2, B @ B % @ W@
= B & & © il £Q 0
Amazon Amazon Amazon Amazon Amazon Amazon Amazon Amazon Amazon Contact Lens
Comprehend Translate  Textract Kendra Lex Personalize Forecast Fraud Detector CodeGuru For Amazon
+Medical Connect
SageMaker Studio IDE NEW
Ground  Augmented SageMaker
Truth I\ " Neo
Built-in SageMaker RELEWVELCH Model SELEWVEICH SageMaker Model SageMaker
algorithms ~ Notebooks N®W  Experiments MW tuning Debugger NEW  Autopilot NEW hosting Model Monitor NEW
NEW
{2 GLUON K Keras , .
Deep Learning GPUs & Elastic Inferentia FPGA
@ AMIs & Containers CPUs Inference
© 2019 Amazon Web Services, Inc. or its affiliates. All rights reserved | 33



Explanation - In a Nutshell

34



What is Explainable Al?

Black Box Al Confusion with Today’s Al Black
Box
Decision,
- Recommendation
P g Alproduct R Why did you do that?

When do you succeed or fail?

[ ]

e Why did you not do that?
[ ]

e How do | correct an error?

Clear & Transparent Predictions

____________________________________________________

, , Decision e | understand why
Explainable Explainable x‘ e | understand why not
Al Al Product .
Explanation e | know why you succeed or fail
e | understand, so | trust you



Example of an End-to-End XAl System

G H: Why? H: (Hmm. Seems like it might H: What happens if the
/ C: See below: be just recognizing anemone background
- texture!) Which training anemones are f
examples are most influential removed? E.g., Q
to the prediction?
l C: These ones:
ML Classifier C: I still predict
‘ Green regions argue FISH. because
for FISH, while RED of these green
C: I predict FISH pushes towards DOG. ;

superpixels:

There's more green.

= Humans may have follow-up questions

= Explanations cannot answer all users’ concerns

Weld, D., and Gagan Bansal. "The challenge of crafting
intelligible intelligence." Communications of ACM (2018).



How to Explain? Accuracy vs. Explainability

Learning

* Challenges:
* Supervised
* Unsupervised learning

* Approach:
* Representation Learning
* Stochastic selection

* OQOutput:
e Correlation
¢ No causation

Accuracy

Explainability

A

Neural Net

GAN CNN

Ensemble
RNN Method

XGB
Random

Decision
Forest

Tree

Statistical
Model

raphical Model

Linear
Model

=

J\

Interpretability

Non-Linear
functions

Polynomial
functions

Quasi-Linear
functions




XAl Definitions - Explanation vs. Interpretation

: Oxford Dictionary of
explanatlon | ekspla'ne1f(a)n | English

noun

a statement or account that makes something clear: the birth rate is central to any explanation of
population trends.

interpret | n'terprit |

verb (interprets, interpreting, interpreted) /with object]

1 explain the meaning of (information or actions): the evidence is difficult to interpret.



On the Role of Data in XAl

Table of baby-name data
(baby-2010.csv)

name rank gender year — E::é:
Jacob 1 boy 2010 .\ DT
Isabella a girl 2010 (4 fields)
Ethan 2 boy 2010

Sophia 2 girl 2010

Michael 3 boy 2010

2000 rows
all told

Tabular



Evaluation (1) - Perturbation-based Approaches

Perturb top-k features by attribution and observe change in prediction
e Higher the change, better the method
e Perturbation may amount to replacing the feature with a random value

e Samek et al. formalize this using a metric: Area over perturbation curve
o Plot the prediction for input with top-k features perturbed as a function of k

o Take the area over this curve

A

Area over
perturbation
curve

Prediction for
perturbed inputs

Drop in prediction ks
when top 40 features
are perturbed

10 20 30 40 50 60 Numberof
perturbed features

KDD 2019 Tutorial on Explainable Al in Industry - https://sites.google.com/view/kdd19-explainable-ai-tutorial


https://sites.google.com/view/kdd19-explainable-ai-tutorial

Evaluation (2) - Human (Role)-based Evaluation is
Essential... but too often based on size!

Evaluation criteria for Explanations [Miller, 2017]
O Truth & probability
O Usefulness, relevance
O Coherence with prior belief

O Generalization

Cognitive chunks = basic explanation units (for different explanation needS)
O Which basic units for explanations?
O How many?
O How to compose them?

O Uncertainty & end users?

[Doshi-Velez and Kim 2017, Poursabzi-Sangdeh 18]



Evaluation (3) - XAl: One Objective, Many Metrics

Completeness

Comprehensibility Succinctness Actionability Reusability Accuracy

How concise and What can one Could the How accurate and
compact is the action, do with explanation be precise is the
explanation? the explanation? personalized? explanation?

How much effort
for correct human
interpretation?

Is the explanation
complete, partial,
restricted?

Source: Accenture Point of View. Understanding Machines: Explainable Al. Freddy Lecue, Dadong Wan



Explanation in Al (not only Machine Learning!)
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XAl: One Objective, Many ‘Al’'s, Many Definitions, Many Approaches




XAl: One Objective, Many ‘Al’'s, Many Definitions, Many Approaches




XAl: One Objective, Many ‘Al’'s, Many Definitions, Many Approaches

How to summarize the
reasons (motivation,
justification, understanding
for an Al system behavior,

Dependency Feature Surrogate
Plot Importance Model

—— p and explain the causes of
e good . . .
_— their decisions?
—
—— e
hich features are responsible of
classification?

Planning

Robotics




XAl: One Objective, Many ‘Al’'s, Many Definitions, Many Approaches

Saliency Map

Integrated  Gradient
Dependency Feature Surrogate 09 s Sroomrsg (S, Gloes megmeg Crone 0T R,
Plot Importance Model - [ e -4 [ = |
el £ e 9 :
Gom U R R S S
Wheaten & # % # & g ¥
Toir

Uncertainty Map




XAl: One Objective, Many ‘Al’'s, Many Definitions, Many Approaches

Saliency Map
Strategy (-
. . . it Ny i Ed
Dependency Feature Surrogate Summarization U Graant Smoaiosd oty ey e s It O
Plot Importance Model — we EE e’ 2 2 S S
,,,,, c = & 3
e N S e & i a0, . o & =

Uncertainty Map




XAl: One Objective, Many ‘Al’'s, Many Definitions, Many Approaches

Saliency Map
Strategy (-
. . . it Ny i Ed
Dependency Feature Surrogate Summarization U Graant Smoaiosd oty ey e s It O
Plot Importance Model — we EE e’ 2 2 S S
,,,,, c = & 3
e N S e & i a0, . o & =

Plan Refinement

Uncertainty Map




XAl: One Objective, Many ‘Al’'s, Many Definitions, Many Approaches

Dependency Feature Surrogate
Plot Importance Model

| | N
| \‘% f
. ) S
Conflicts mx @

Resolution

Plan Refinement

Strategy
Summarization

Original
Image

Saliency Map

Integrated ~ Gradient

. Guided  Guided Integrated _Gradients
Gradient  SmoothGrad - BackProp GradCAM  Gradients SmoothGrad  Input

Uncertainty Map

Edge

Detector



XAl: One Objective, Many ‘Al’'s, Many Definitions, Many Approaches

Saliency Map

Dependency Feature Surrogate

Plot Importance Model

| \
\ 7& %
. | ™
Conflicts w2x Qo

Resolution

Plan Refinement

Summarization

Strategy

Original
Image

Integrated  Gradient
Integrated _Gradients
ra

. Guided  Guided
Gradient  SmoothGrad - BackProp GradCAM Gradients SmoothGrad  Input
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Uncertainty Map

Edge

Detector




XAl: One Objective, Many ‘Al’'s, Many Definitions, Many Approaches

Saliency Map
Strategy )
Dependency Feature Surrogate Summarization O s sonans 205, S g s °m::"‘ JEe
Plot Importance Model - - NN o . 3 o &

Plan Refinement

Uncertainty Map
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XAl: One Objective, Many ‘Al’'s, Many Definitions, Many Approaches

Saliency Map
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Dependency Feature Surrogate Summarization O Gant SmoctnGrad o Suded Iegates Gradene L petecer
Plot Importance Model — we EE e’ 2 2 S S
,,,,, o = & 3
e N A c l =~ & A . - g ®
e & & 7 F & 8% ¥

Plan Refinement

: ‘, pos
i

E
I3 T 7 /\
P e § g

Uncertainty Map

| |
| \‘% %
. ) ™
Conflicts a2 ) (0329 ) asemx @ax

Resolution

Machine Learning based

Algorithm 2
Words that A2 considers important:  Predicted:

s @ 1o

Hos Prediction correct:

j—
':_ J
j—

_—

- v . .
I N S E— Smpe'y ’ ;| 1V
e et P alues =L

Narrative-based




XAl: One Objective, Many ‘Al’'s, Many Definitions, Many Approaches

Dependency
Plot
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XAl: One Objective, Many ‘Al’'s, Many Definitions, Many Approaches

Dependency Feature
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Overview of Explanation in Machine Learning (1)

Interpretable Models:
* Decision Trees, Lists and

Sets,
* GAMs,
* GLMs,

* Linear regression,
* Logistic regression,
* KNNs

Data: titanic I naive Bayes Explanation
Model: NB
Prediction: p(survived = yes|x) = 0.671

Actual class label for this instance: yes

Feature Contribution Value
Class = 3rd
Age = adult
Sex = female

Naive Bayes model

Igor Kononenko. Machine learning for medical diagnosis:
history, state of the art and perspective. Artificial Intelligence
in Medicine, 23:89-109, 2001.

Counterfactual
What-if

Brent D. Mittelstadt, Chris
Russell, Sandra Wachter:
Explaining Explanations in Al.
FAT 2019: 279-288

xxxxxxxxxxx

Rory Mc Grath, Luca Costabello,
Chan Le Van, Paul Sweeney,
Farbod Kamiab, Zhao Shen,
Freddy Lécué: Interpretable Credit
Application Predictions With
Counterfactual Explanations.
CoRR abs/1811.05245 (2018)

Predicted cancer probability

(RN NN NN N NI NNNNNNNEREREN]
20 40

Age

SRF volume in central-3mm at M2 | —
IR thickness in fovea at 1 |
IR thickness in central-3mim at M2 |
IRF volume in parafovea at M2 I
SRF volume In paratovea-temporal at M- I
IR thickness in fovea at M2 I
TRT thickness in fovea at M1 |
TRT thickness in fovea at M2
IRF volume in central-3mm at M2
SRF area in central-3mm at M2 I
SRF area in parafovea-temporal at M2 [
IR thickness in parafovea-nasal at M2 |
SRF volume in fovea at M1 |
SRF volume in parafovea at M2 |
IRF area in parafovea at M2 I

0 0.1 02 03 04 05 06 07 08 09 1
Relative Feature Importance

Feature Importance "
Partial Dependence Plot
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e Artificial Neural Network

. (ﬁE?eLU({)\\

X =

Ty ) = Rel Uz, -1-2)
UGN =1 P
152 | ]l L

it i = ReLU(x,) i e
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Network f(z1,z2)

Attributions at x1 = 3,2 = 1
Integrated gradients z; = 1.5, z2 = —0.5
DeepLift z1 =15, 12 = —0.5
LRP 1 =15, zg =

z 2, = ReLU(x, - 1) o -
(1\:,2‘;,// o, %)= 1ReLu(z1 - 12;\\\)
=

Network g(z1,x2)

Attributions at x1 = 3,2 = 1
Integrated gradients z; = 1.5, z2 = —0.5
DeepLift 1 =2, 220 =—1
LRP 1 =2, 22 =—1

Attribution for Deep
Network (Integrated gradient-based)

Mukund Sundararajan, Ankur Taly, and Qiqgi Yan.
Axiomatic attribution for deep networks. In ICML,
pp. 3319-3328, 2017.

Avanti Shrikumar, Peyton Greenside, Anshul
Kundaje: Learning Important Features Through
Propagating Activation Differences. ICML 2017:
3145-3153

Less interpretable Interpretable
End-to-End End-to-End

’
:

’
I
|
1
1
|
1
1
1
1
1
1
1
1

(a) Standard attention model (b) RETAIN model

Attention Mechanism

Edward Choi, Mohammad Taha Bahadori, Jimeng Sun,
Joshua Kulas, Andy Schuetz, Walter F. Stewart: RETAIN: An
Interpretable Predictive Model for Healthcare using
Reverse Time Attention Mechanism. NIPS 2016:

3504-3512
Chaofan Chen, Oscar Li, Alina Barnett, Jonathan Su, Cynthia D. Bahdanau, K. Cho, and Y. Bengio. Neural machine
Rudin: This looks like that: deep learning for interpretable translation by jointly learning to align and translate.
image recognition. CoRR abs/1806.10574 (2018) International Conference on Learning Representations,
2015

prototype class‘mcr network h

r
— prototype fully-connected ~ softmax
layer p layer w layer s

Tof {TO < 0.16;

- encoder Tansformed ] o
x network
f
output of good
J— prototype
classifier
network o6d.
econstructed i (h e f)(x)
r xu‘r:‘sp::& :‘,:: :i:; S of (Tsfi <203
G-N® g < 3165570}
bad good
Auto-encoder / Prototype Surogate Model

Mark Craven, Jude W. Shavlik: Extracting Tree-Structured

Li Li i in: D
Oscar Li, Hao Liu, Chaofan Chen, Cynthia Rudin: Deep Representations of Trained Networks. NIPS 1995: 24-30

Learning for Case-Based Reasoning Through Prototypes: A
Neural Network That Explains Its Predictions. AAAI 2018:
3530-3537



Overview of Explanation in Machine Learning (3)

Airplane
res5c unit 1243

e Computer Vision

Train
res5c unit 924

res5c unit 2001
e

P4

incepton 5 unit 625 Interpretable Units R P
m David Bau, Bolei Zhou, Aditya Khosla, Aude Oliva, Antonio Torralba:

inception_5b unit 415

Network Dissection: Quantifying Interpretability of Deep Visual
Representations. CVPR 2017: 3319-3327

(a) Input Image

(b) Ground Truth (c) Semantic Segmentation (d) Aleatoric Uncertainty (e) Epistemic Uncertainty

Uncertainty Map

Alex Kendall, Yarin Gal: What Uncertainties Do We Need in Bayesian Deep Learning for
Computer Vision? NIPS 2017: 5580-5590

Western Grebe Description: This is a large bird with a white neck and a black back in the water.

Class Definition: The Western Grebe is a waterbird with a yellow pointy beak, white neck and belly,
and black back.

Explanation: This is a Western Grebe because this bird has a long white neck, pointy yellow beak
and red eye.

Laysan Albatross

Description: This is a large flying bird with black wings and a white belly.
Class Definition: The Laysan Albatross is a large seabird with a hooked yellow beak, black back
\ and white belly.
Visual Explanation: This is a Laysan Albatross because this bird has a large wingspan, hooked
Laysan Albatross Description: This is a large bird with a white neck and a black back in the water.
Class Definition: The Laysan Albatross is a large seabird with a hooked yellow beak, black back
and white belly.

yellow beak, and white belly.
Visual Explanation: This is a Laysan Albatross because this bird has a hooked yellow beak white
neck and black back.

Visual Explanation

Lisa Anne Hendricks, Zeynep Akata, Marcus Rohrbach, Jeff Donahue, Bernt Schiele,
Trevor Darrell: Generating Visual Explanations. ECCV (4) 2016: 3-19

Xs
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logit: 9.90
prob: 0.18

label: bell pepper &

logit: 20.36
pred: bell pepper il

prob: 0.98

label: ice lolly
pred: ice cream

logit: 12.75
prob: 0.34

prob: 0.71

label: abaya logit: 11.07
prob: 0.33

pred: cloak

logit: 12.39
prob: 0.39

]
L]
]
I:‘ logit: 15.65
L]
fe

Saliency Map

Julius Adebayo, Justin Gilmer, Michael Muelly, lan J. Goodfellow, Moritz Hardt, Been Kim:
Sanity Checks for Saliency Maps. NeurlPS 2018: 9525-9536
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e Game Theory
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Shapley Additive Explanation

Scott M. Lundberg, Su-In Lee: A Unified Approach to Interpreting Model Predictions. NIPS 2017:
4768-4777
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e Game Theory
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Shapley Additive Explanation

Scott M. Lundberg, Su-In Lee: A Unified Approach to Interpreting Model Predictions. NIPS 2017:

4768-4777
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L-Shapley and C-Shapley (with graph structure)

Jianbo Chen, Le Song, Martin J. Wainwright, Michael I. Jordan: L-Shapley and
C-Shapley: Efficient Model Interpretation for Structured Data. ICLR 2019
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e Game Theory
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Shapley Additive Explanation

Scott M. Lundberg, Su-In Lee: A Unified Approach to Interpreting Model Predictions. NIPS 2017:
4768-4777

Jianbo Chen, Le Song, Martin J. Wainwright, Michael I. Jordan: L-Shapley and
C-Shapley: Efficient Model Interpretation for Structured Data. ICLR 2019

instance-wise feature
importance (causal
influence)

Erik Strumbelj and Igor Kononenko. An
efficient explanation of individual classifications
using game theory. Journal of Machine
Learning Research, 11:1-18, 2010.

Anupam Datta, Shayak Sen, and Yair Zick.
Algorithmic transparency via quantitative input
influence: Theory and experiments with
learning systems. In Security and Privacy (SP),
2016 IEEE Symposium on, pp. 598—-617. IEEE,
2016.
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e Search and Constraint Satisfaction

If A+1 then NEW Conflicts
onXandY

Conflicts resolution

Barry O'Sullivan, Alexandre Papadopoulos, Boi Faltings, Pearl Pu: Representative Explanations for
Over-Constrained Problems. AAAI 2007: 323-328

Robustness Computation

Hebrard, E., Hnich, B., & Walsh, T. (2004, July). Robust solutions for constraint satisfaction and
optimization. In ECAI (Vol. 16, p. 186).
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e Search and Constraint Satisfaction

If A+1 then NEW Conflicts
onXandY

l\ A
e }
FANWARINAN X 12 SAN

Conflicts resolution

Y

Barry O'Sullivan, Alexandre Papadopoulos, Boi Faltings, Pearl Pu: Representative Explanations for
Over-Constrained Problems. AAAI 2007: 323-328

Robustness Computation

Hebrard, E., Hnich, B., & Walsh, T. (2004, July). Robust solutions for constraint satisfaction and
optimization. In ECAI (Vol. 16, p. 186).

Explanations

(1234, 0)

Ve

Constraints
relaxation

Ulrich Junker: QUICKXPLAIN: Preferred Explanations and
Relaxations for Over-Constrained Problems. AAAI 2004:
167-172
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* Knowledge Representation and Reasoning

Ref Wi . 1. (at-least 3 grape) == (at-least 2 grape) Atlst
Trans Fe=—p, Fp=—=& 3
Fo =% 2. (and (at-least 3 grape) (prim GOOD WINE))

[ [ = (at-least 2 grape) AndlL,1
Eq F o{a/B} — D{a/B} 3. (prim GOOD WINE) == (prim WINE) Prim
g __rrcEp 4. (and (af:-least 3 grape) (prim GOOD WINE))

F (prim EE) —> (prim FF) = (prim WINE) AndL,3
5. A = (and
THING F C == THING .
~ (at-least 3 grape) (prim GOOD WINE)) Told

AndR Fc=np Fc=(and ep 6. A == (prim WINE) Eq,4,5

F o= (and D 2p) 7.(prim WINE) = (and (prim WINE)) AndEq
Andl —te—=pr 8. A == (and (prim WINE)) Eq,7,6

F(and .c.)— & 9. A == (at-least 2 grape) Eq,5,2
All Fo=p 10. A = (and (at-least 2 grape) (prim WINE)) AndR393

F(all pc) = (all yD)
n>m

ALt F(at-least » p) = (at-least mp)
AndEq FC=(and C)
AtLs0 F (at — least 0 p) = THING
All-thing F (all p THING) = THING
Allang land(allp C)(allp D) .. ) = |A = (and (at-least 3 grape) (prim GOOD WINE)) |

(and (allp (and C D)) ...)
Explaining Reasoning (through Justification) e.g., Subsumption

Deborah L. McGuinness, Alexander Borgida: Explaining Subsumption in Description Logics. IJCAI (1)
1995: 816-821
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* Knowledge Representation and Reasoning

Ref FC=C

Fec=—p, Fop=—&
Trans Fe==&
E - asB Fo=—p

1 F c{a/B} = D{a/B}
Prim - ER BB -
F (prim EE) — (prim FF)

THING F C == THING

F¢=—p, Fc—>(and EE)
I ¢ = (and b EE)

ol =}
Andl F(and .c..)= &

AndR

All _ bFe=p

F(all p c) = (all p D)

a>m

Rile F(at-Teast » p) —> (at-least mp)
AndEq FC=(and C)
AtLs0 F (at — least 0 p) = THING
All-thing + (all p THING) = THING
All-and F(and (allp C)(allp D).. ) =

(and (allp (and C D)) ...)

Explaining Reasoning (through Justification) e.g., Subsumption

Deborah L. McGuinness, Alexander Borgida: Explaining Subsumption in Description Logics. IJCAI (1)

1995: 816-821

[}

5
6
(4
3

9

. (at-least 3 grape) == (at-least 2 grape)

AtlLst

.(and (at-least 3 grape) (prim GOOD WINE))

= (at-least 2 grape)
.(prim GOOD WINE) == (prim WINE)

AndL,1
Prim

. (and (at-least 3 grape) (prim GOOD WINE))

= (prim WINE)
. A =(and
(at-least 3 grape) (prim GOOD WINE))
.A == (prim WINE
.(prim WINE) = (and (prim WINE))
. A == (and (prim WINE))
. A == (at-least 2 grape)

E
10. A = (and (at-least 2 grape) (prim WINE))

AndL,3

Told

Eq,4,5
AndEq
Eq,7,6

q,5,2
AndR,9,8

|A = (and (at-least 3 grape) (prim GOOD WINE)) |

P(lcaving|alarm)

- P P(alarm|fire A
{ tampering} { fire }
) ’ . P(alarm|-fire A
o V-4 i P(leaving|~alarm)
{ alarm) | smokey

—

( leavin'g‘ disjoint([fire(yes): 0.01, fire(no): 0.99).

smoke(Sm) « fire(Fi)

n

| report}

Abduction Reasoning (in Bayesian

Network)

P(alarm|=fire A tampering)

P(report|leaving)

P(report|-lcaving)

rsmoke(Sm, Fi).

LN | A | R

3 disjoint([cssmoke(yes, yes) : 0.9, cesmoke(no, yes) :

disjoint([csmoke(yes, no) : 0.01, c_smoke(no, no):

David Poole: Probabilistic Horn Abduction and Bayesian

Networks. Artif. Intell. 64(1): 81-129 (1993)

0.99
0.85
0.0001
0.88
0.001
0.75

0.01

0.1]).
0.99]).
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* Knowledge Representation and Reasoning

Ref FC=C
Trans kcﬁ}_ggi:"E
E I a=B Fo=—p
1 F c{a/B} = D{a/B}
Prim - ER BB -
F (prim EE) — (prim FF)
THING F C == THING
AndR F¢=—p, Fc—>(and EE)
I ¢ = (and b EE)
ol =}
Andl F(and .c..)= &
All _ bFe=p
F(all p c) = (all p D)
A>m
Rile F(at-Teast » p) —> (at-least mp)
AndEq FC=(and C)
AtLs0 F (at — least 0 p) = THING
All-thing + (all p THING) = THING
All-and F(and (allp C)(allp D).. ) =

(and (allp (and C D)) ...)

Explaining Reasoning (through Justification) e.g., Subsumption

1. (at-least 3 grape) == (at-least 2 grape) Atlst
.(and (at-least 3 grape) (prim GOOD WINE))

= (at-least 2 grape) AndlL,1
3. (prim GOOD WINE) == (prim WINE) Prim
4. (and (at-least 3 grape) (prim GOOD WINE))

[}

= (prim WINE) AndL,3
5. A = (and

(at-least 3 grape) (prim GOOD WINE)) Told
6. A == (prim WINE) Eq,4,5
7.(prim WINE) = (and (prim WINE)) AndEq
8. A == (and (prim WINE)) Eq,7,6

9. A == (at-least 2 grape) Eq,5,2
10. A = (and (at-least 2 grape) (prim WINE)) AndR393

|A = (and (at-least 3 grape) (prim GOOD WINE)) |

Deborah L. McGuinness, Alexander Borgida: Explaining Subsumption in Description Logics. IJCAI (1)

1995: 816-821

< e i P(alarm|fire A ~tampering) =
{ tampering; { fire} P(alarm|=fire Atampering) =
) ’ i Plalarm|=fire A =tampering) =
P(lcaving|alarm) =

N R 5
. iy "2 P(leaving|~alarm) =
0‘ alarm) | smokey P(report|leaving) =

P(report|-lcaving)

—

(Leaving disjoint([fire(yes): 0.01, fire(no) : 0.99)).

smoke(Sm) « fire(Fi) A cesmoke(Sm, Fi).

a

( re ort‘b AW t
& 2 J disjoint([csmoke(yes, no): 0.01, c_smoke(no, no) :

Abduction Reasoning (in Bayesian
Network)

David Poole: Probabilistic Horn Abduction and Bayesian
Networks. Artif. Intell. 64(1): 81-129 (1993)

close

detected

open

Diagnosis Inference

disjoint([cssmoke(yes, yes) : 0.9, cesmoke(no, yes) :

0.99
0.85
0.0001
0.88
0.001
0.75

0.01

0.1]).
0.99]).

Alban Grastien, Patrik Haslum, Sylvie Thiébaux: Conflict-Based
Diagnosis of Discrete Event Systems: Theory and Practice. KR

2012



Overview of Explanation in Different Al Fields (4

* Multi-agent Systems

MAS INFRASTRUCTURE

INDIVIDUAL AGENT INFRASTRUCTURE

MAS INTEROPERATION
Translation Services Interoperation Services

INTEROPERATION
Interoperation Modules

CAPABILITY TO AGENT MAPPING
Middle Agents

CAPABILITY TO AGENT MAPPING
Middle Agents Components

NAME TO LOCATION MAPPING

NAME TO LOCATION MAPPING
ANS Component

SECURITY
Certificate Authority ~ Cryptographic Services

SECURITY
Security Module private/public Keys

PERFORMANCE SERVICES
MAS Monitoring Reputation Services

PERFORMANCE SERVICES
Performance Services Modules

MULTIAGENT MANAGEMENT SERVICES
Logging, Acivity Visualization, Launching

MANAGEMENT SERVICES
Logging and Visualization Components

ACL INFRASTRUCTURE
Public Ontology Protocols Servers

ACL INFRASTRUCTURE

ACL Parser  Private Ontology  Protocol Engine

COMMUNICATION INFRASTRUCTURE
Discovery Message Transfer

COMMUNICATION MODULES
Discovery Component Message Tranfer Module

Machines, OS, Network

OPERATING ENVIRONMENT
Multicast Transport Layer: TCP/IP, Wireless, Infrared, SSL

Explanation of Agent Conflicts & Harmful
Interactions

Katia P. Sycara, Massimo Paolucci, Martin Van Velsen, Joseph A.
Giampapa: The RETSINA MAS Infrastructure. Autonomous Agents
and Multi-Agent Systems 7(1-2): 29-48 (2003)
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Dom?tin&
* Multi-agent Systems / \

Strategy Agent(s)

Application Intelligent Strategy .
MAS INFRASTRUCTURE INDIVIDUAL AGENT INFRASTRUCTURE Domain R:V°"‘d fvttat:s States Summary — s
e, resentation 5
Characteristic P Extraction Interface = .
MAS INTEROPERATION INTEROPERATION
Translation Services Interoperation Services Interoperation Modules t ]
CAPABILITY TO AGENT MAPPING CAPABILITY TO AGENT MAPPING
Middle Agents Middle Agents Components A ent Strate Su m marization
NAME TO LOCATION MAPPING NAME TO LOCATION MAPPING g gy
ANS ANS Component
prep— Fre— Ofra Amir, Finale Doshi-Velez, David Sarne: Agent Strategy Summarization. AAMAS 2018: 1203-1207
Certificate Authority ~ Cryptographic Services Security Module private/public Keys
PERFORMANCE SERVICES PERFORMANCE SERVICES

MAS Monitoring Reputation Services Performance Services Modules

MULTIAGENT MANAGEMENT SERVICES MANAGEMENT SERVICES

Logging, Acivity Visualization, Launching Logging and Visualization Components

ACL INFRASTRUCTURE ACL INFRASTRUCTURE

Public Ontology Protocols Servers ACL Parser  Private Ontology  Protocol Engine

COMMUNICATION INFRASTRUCTURE COMMUNICATION MODULES

Discovery Message Transfer Discovery Component Message Tranfer Module

OPERATING ENVIRONMENT
Machines, OS, Network Multicast Transport Layer: TCP/IP, Wireless, Infrared, SSL

Explanation of Agent Conflicts & Harmful
Interactions
Katia P. Sycara, Massimo Paolucci, Martin Van Velsen, Joseph A.

Giampapa: The RETSINA MAS Infrastructure. Autonomous Agents
and Multi-Agent Systems 7(1-2): 29-48 (2003)
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* Multi-agent Systems

MAS INFRASTRUCTURE

INDIVIDUAL AGENT INFRASTRUCTURE

MAS INTEROPERATION
Translation Services Interoperation Services

INTEROPERATION
Interoperation Modules

CAPABILITY TO AGENT MAPPING
Middle Agents

CAPABILITY TO AGENT MAPPING
Middle Agents Components

NAME TO LOCATION MAPPING

NAME TO LOCATION MAPPING
ANS Component

SECURITY
Certificate Authority ~ Cryptographic Services

SECURITY
Security Module private/public Keys

PERFORMANCE SERVICES
MAS Monitoring Reputation Services

PERFORMANCE SERVICES
Performance Services Modules

MULTIAGENT MANAGEMENT SERVICES
Logging, Acivity Visualization, Launching

MANAGEMENT SERVICES
Logging and Visualization Components

ACL INFRASTRUCTURE
Public Ontology Protocols Servers

ACL INFRASTRUCTURE

ACL Parser Private Ontology  Protocol Engine

COMMUNICATION INFRASTRUCTURE
Discovery Message Transfer

COMMUNICATION MODULES
Discovery Component Message Tranfer Module

Machines, OS, Network

OPERATING ENVIRONMENT
Multicast Transport Layer: TCP/IP, Wireless, Infrared, SSL

Explanation of Agent Conflicts & Harmful
Interactions

Katia P. Sycara, Massimo Paolucci, Martin Van Velsen, Joseph A.
Giampapa: The RETSINA MAS Infrastructure. Autonomous Agents
and Multi-Agent Systems 7(1-2): 29-48 (2003)

®

Domain ‘
o Gl

Application
Domain

Agent(s)

\

World States
Representation

Intelligent
States
Extraction

Strategy
Summary
Interface

Characteristic

Agent Strategy Summarization

Ofra Amir, Finale Doshi-Velez, David Sarne: Agent Strategy Summarization. AAMAS 2018: 1203-1207

e Control Question
e Istarted
A TN using my weapons because
(et recessares. e the intercept geometry was selected and
1 r ROE was achieved and
the bogey was a radar—contact and
the bogey was the primary—threat.
Otherwise, if
the intercept geometry were not selected or
ROE were not achieved or
the bogey were not a radar—contact or
there was no primary-threat,
Iwould have achieved proximity to the bogey.
1 concluded that the bogey achieved ROE because
the bogey was a bandit and
I had received positive ID from the E2C and
electronic positive ID was attained.

ERE

/Thawe N\ TR\
(rotcotectea) (notcotectea
Cogresensy/ kichen s’

2 ltake the
requied

szr;m 1
ichen stut

! Wait l l Continue

Explainable Agents

Joost Broekens, Maaike Harbers, Koen V. Hindriks, Karel van
den Bosch, Catholijn M. Jonker, John-Jules Ch. Meyer: Do
You Get It? User-Evaluated Explainable BDI Agents. MATES
2010: 28-39

W. Lewis Johnson: Agents that Learn to
Explain Themselves. AAAI 1994:
1257-1263
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‘NLP ~ ©®©
Fine-grained
explanations are in the
form of:
* textsina

real-world dataset;
* Numerical scores

Generated
Explanation e,

Explainable NLP

Hui Liu, Qingyu Yin, William Yang Wang: Towards Explainable NLP: A Generative
Explanation Framework for Text Classification. CoRR abs/1811.00196 (2018)
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*NLP

Generated
Explanation e,

Golden
Expl. e,

3

|
——

=

Fine-grained

explanations are in the

form of:

* textsina
real-world dataset;

* Numerical scores

Explainable NLP

Hui Liu, Qingyu Yin, William Yang Wang: Towards Explainable NLP: A Generative
Explanation Framework for Text Classification. CoRR abs/1811.00196 (2018)

Example #3/of 6 True Class: ' Atheism @ m @
Algorithm 1 Algorithm 2
‘Words that Al considers important: Predicted: Words that A2 considers important: Predicted:
GOD| . Atheism Posting| . Atheism
mean Prediction correct: Hostl Prediction correct:
anyone| J Re J
this| by
Koresh| in
through| Nntp
Document Document

From: pauld@verdix.com (Paul Durbin) From: pauld@verdix.com (Paul Durbin)
Subject: Re: DAVID CORESH IS! GOD! Subject: Re: DAVID CORESH IS! GOD!
Nntp-Posting-Host: sarge.hq.verdix.com Nntp-Posting-Host: sarge.hq.verdix.com
Organization: Verdix Corp Organization: Verdix Corp

Lines: 8 Lines: 8

LIME for NLP

Marco Tulio Ribeiro, Sameer Singh, Carlos Guestrin: "Why Should | Trust You?":
Explaining the Predictions of Any Classifier. KDD 2016: 1135-1144
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Example #3 of 6 True Class: ‘ Atheism @ @ Q ‘
$=[s1.52-55] )
° N L P ® . - @ Algorithm 1 Algorithm 2
‘Words that Al considers important: Predicted: Words that A2 considers important: Predicted:
F ne —g raine d GOD| . Atheism Posting| . Atheism
. H mean Prediction correct: Hostl Prediction correct:
explanations are in the gl J & Y
form of: i by
. Koresh| in
’I 22 Pl * tEXtS | n a through| Nntp
| argmax
e real-world dataset; Dt Docament
Explanation e,
_! : H From: pauld@verdix.com (Paul Durbin) From: pauld@verdix.com (Paul Durbin)
7. ! '}cfgh_. ® N umerica | scores Subject: Re: DAVID CORESH IS! GOD! Subject: Re: DAVID CORESH IS! GOD!
(?(i]l;lcn Clssifier C clakelstad : Ppred - Nntp-Posting-Host: sarge.hq.verdix.com Nntp-Posting-Host: sarge.hq.verdix.com
= € T ; 1 Organization: Verdix Corp Organization: Verdix Corp
& ] Lines: 8 Lines: 8
e
]
LIME for NLP

Marco Tulio Ribeiro, Sameer Singh, Carlos Guestrin: "Why Should | Trust You?":
Explaining the Predictions of Any Classifier. KDD 2016: 1135-1144

Explainable NLP

Hui Liu, Qingyu Yin, William Yang Wang: Towards Explainable NLP: A Generative

Explanation Framework for Text Classification. CoRR abs/1811.00196 (2018) =
NLP Debugger . ) A T v
Hendrik Strobelt, Sebastian Hendrik Strobelt, Sebastian il b b Gy L iy o e e o R i -
Gehrmann, Hanspeter Pfister, Gehrmann, Michael Behrisch, Adam , 7 \ ) :
. unser werag  hilft , fehler in mmkn zu  finden mittels visveller analysen . o]
Alexander M. Rush: LSTMVis: ATool  Perer, Hanspeter Pfister, Alexander M. o i (B |l | e e L
for Visual Analysis of Hidden State Rush: Seq2seq-Vis: A Visual Debugging B B e e 6 6 50 S - .
Dynamics in Recurrent Neural Tool for Sequence-to-Sequence B BBl b O -0 O . L=
Networks. IEEE Trans. Vis. Comput. Models. IEEE Trans. Vis. Comput. L -

Graph. 24(1): 667-676 (2018) Graph. 25(1): 353-363 (2019)
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* Planning and Scheduling

O Explanation Type [ Rl [ R2 [ R3 [ R4 ]
Plan Patch Explanation / VAL
Model Patch Explanation
Minimally Complete Explanation
Minimally Monotonic Explanation
(Approximate) Minimally Complete Explanation

S ENENENEN
ANENENENEN
ANESPSENEN

| x| %

Rita Borgo, Michael Cashmore, Daniele Magazzeni: Towards Providing Explanations for Al Planner
Decisions. CoRR abs/1810.06338 (2018)

domain

Question/Suggestion
iy new model

Problem
Interface

Knowledge
Base

XAl-Plan Planner
_ Interface
~a\
new plan
Response/Comparison
XAl Plan

Rita Borgo, Michael Cashmore, Daniele Magazzeni: Towards Providing Explanations for Al Planner
Decisions. CoRR abs/1810.06338 (2018)



Overview of Explanation in Different Al Fields (6)

* Planning and Scheduling

A N
O Explanation Type I RZ | R3 | R4 | o :

R1 | S1 Tery S1 ™ 81 T S1
Plan Patch Explanation / VAL X v 01/ \31
Model Patch Explanation 4 v : =
v ? : =
v ? 3
X v

Minimally Complete Explanation
Minimally Monotonic Explanation

(Approximate) Minimally Complete Explanation “.1;/ S e - “\ Bk
Sk+1 9Tk
Rita Borgo, Michael Cashmore, Daniele Magazzeni: Towards Providing Explanations for Al Planner ]
Decisions. CoRR abs/1810.06338 (2018) °
ga ga ga 9B E

(a) (b) (c) (d)

domain

Question/Suggestion
iy new model

Problem
Interface

Knowledge
Base

Human-in-the-loop Planning

Maria Fox, Derek Long, Daniele Magazzeni: Explainable Planning. CoRR
abs/1709.10256 (2017)

Pl
) XAl-Plan Iterface
=
new plan
Response/Comparison
(Manual) Plan Comparison
XAl Plan

Rita Borgo, Michael Cashmore, Daniele Magazzeni: Towards Providing Explanations for Al Planner
Decisions. CoRR abs/1810.06338 (2018)



Overview of Explanation in Different Al Fields (7)

* Roboti

ODOTICS V> S,
\m F"
¥7718 = I{r](,uq
nT r
e | =707
\n{é P, o
605

7 i g

ow 3

“¥74
Abstraction, A
Level 1 Level 2 Level 3 Level 4

General
Picture

Start and finish point of
the complete route

Total distance and time
taken for the complete
route

Total distance and time
taken for the complete
route

Starting and ending land-
mark of complete route

Summary

Start and finish point for
subroute on each floor of
each building

Total distance and time
taken for subroute on
each floor of each build-
ing

Total distance and angles
for subroute on each floor
of each building

Starting and ending land-
mark for subroute on
each floor of each build-
ing

Specificity, S

Start and finish points of
complete route plus time
taken for each edge of

Angle turned at each
point plus the total dis-
tance and time taken for

Turn direction at each
point plus total distance

All landmarks encoun-
tered on the route

Detailed
Narrative

for each edge of route

route each edge of route

Narration of Autonomous Robot Experience

Stephanie Rosenthal, Sai P Selvaraj, and Manuela Veloso. Verbalization: Narration of autonomous
robot experience. In 1JCAI, pages 862—868. AAAI Press, 2016.

Daniel J Brooks et al. 2010. Towards State Summarization for Autonomous Robots.. In AAAI Fall

Symposium: Dialog with Robots, Vol. 61. 62.



Overview of Explanation in Different Al Fields (7)

° R O b Ot | CS L” 2 \mwm Robeot: Ihave de.c1ded to turn left.
k \,m F’ Human: Why did you do that?
e I foste Robot: I believe that the correct action is to turn left
J mt [~ BECAUSE:
L7607 I'm being asked to go forward
t:f AND This area in front of me was 20 cm higher than me
*highlights area™
3T, ﬁ’z& AND the area to the left has maximum protrusions of less
D than 5 cm *highlights area™

AND I'm tilted to the right by more than 5 degrees.
Here is a display of the path through the tree that lead to

Abstraction, A this decision. *displays tree*
Level 1 Level 2 Level 3 Level 4 Human: How confident are you in this decision?
E2 | Start and finish point of ‘T‘;“" df‘s"“:]f"' jaad S Ia‘;‘a’ ‘}'S‘a‘:ﬁe . oo | Starting and ending land- Robot: The distribution of actions that reached this leaf
5.3 | the complete route S, Jon e scomprel B0 hon, he'compeR. | markiof complete route 3 $ : > *d3 8 %
S& route route node is shown in this histogram. *displays histogram
» 5 st it o e !1:;(:]11 dfi(s,nrans:bf:lﬂenx ik el smlﬂn%;?dsilm elan:l; This action is predicted to be correct 67% of the time.
E | £ | subrouteoneachfloorof | .o "a o coach build- | forsubroute oneachfloor | oo 4te e b build- Human: Where did the threshold for the area in front come
& a each building 5 of each building 3 9
i ing ing from?
% | gg | Starand finish points of | Angle tumed at each | p o grcrion at each Robot: Here is the histogram of all training examples that
=22 | complete route plus time | point plus the total dis- int Dilis. fotal distaice All landmarks encoun- 2 f 5
3§ taken for each edge of | tance and time taken for poiDt rug S0taR, CLsiAmg tered on the route reached this leaf. 80% of examples where this area was
52 route each edge of route for each edge of route 3 H 3 LOp P
3 above 20 cm predicted the appropriate action to be “drive
forward”.

Narration of Autonomous Robot Experience

From Decision Tree to human-friendly

Stephanie Rosenthal, Sai P Selvaraj, and Manuela Veloso. Verbalization: Narration of autonomous information

robot experience. In 1JCAI, pages 862—868. AAAI Press, 2016.
Raymond Ka-Man Sheh: "Why Did You Do That?" Explainable Intelligent

Robots. AAAI Workshops 2017
Daniel J Brooks et al. 2010. Towards State Summarization for Autonomous Robots.. In AAAI Fall
Symposium: Dialog with Robots, Vol. 61. 62.



Overview of Explanation in Different Al Fields (8)

* Reasoning under Uncertainty

Probabilistic Graphical Models

Daphne Koller, Nir Friedman: Probabilistic Graphical Models - Principles and Techniques. MIT
Press 2009, ISBN 978-0-262-01319-2, pp. I-XXXV, 1-1231



Explainable Machine Learning

(from a Machine Learning Perspective)
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Achieving Explainable Al

Approach 1: Post-hoc explain a given Al model

e Individual prediction explanations in terms of input features, influential examples,
concepts, local decision rules

e Global prediction explanations in terms of entire model in terms of partial
dependence plots, global feature importance, global decision rules

Approach 2: Build an interpretable model

e Logistic regression, Decision trees, Decision lists and sets, Generalized Additive
Models (GAMs)
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Post-hoc
dataset-level
interpretability

WANT
EXAMPLE-
ACC. TOO LOW t BASED
EXPLANATION

WANT
EXPLANTION
CURVES

NEED MORE

EXPLANATION
A

Model-based
(intrinsic)
interpretability

Post-hoc
prediction-level
interpretability

Slide credit: https://twitter.com/chandan_singh96/status/1138811752769101825




Achieving Explainable Al

Approach 1: Post-hoc explain a given Al model

e Individual prediction explanations in terms of input features, influential examples,
concepts, local decision rules

e Global prediction explanations in terms of entire model in terms of partial
dependence plots, global feature importance, global decision rules
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Top label: “clog”

Why did the network label this
image as “clog”?
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Top label: “fireboat”

Why did the network label this
image as “fireboat”?
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Credit Lending in a black-box ML world

[ ] . .
ﬁ Credit Line Increase Bank Query Al System Credit Lending Model

L
? 111

Request Denied —— R Credit Lending Score = 0.3
2

Why? Why not?
How?

Fair lending laws [ECOA, FCRA] require credit decisions to be explainable



The Attribution Problem

Attribute a model’s prediction on an_input to features of the input
Examples:

e Attribute an object recognition network’s prediction to its pixels

e Attribute a text sentiment network’s prediction to individual words

e Attribute a lending model’s prediction to its features

A reductive formulation of “why this prediction” but surprisingly useful



Application of Attributions

e Debugging model predictions
E.g., Attribution an image misclassification to the pixels responsible for it

e Generating an explanation for the end-user
E.g., Expose attributions for a lending prediction to the end-user

e Analyzing model robustness
E.g., Craft adversarial examples using weaknesses surfaced by attributions

e Extract rules from the model
E.g., Combine attribution to craft rules (pharmacophores) capturing prediction
logic of a drug screening network
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Next few slides

We will cover the following attribution methods**
e Ablations
e Gradient based methods (specific to differentiable models)

e Score Backpropagation based methods (specific to NNs)

We will also discuss game theory (Shapley value) in attributions

**Not a complete list!
See Ancona et al. [ICML 2019], Guidotti et al. [arxiv 2018] for a comprehensive survey
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Ablations

Drop each feature and attribute the change in prediction to that feature
Pros:

e Simple and intuitive to interpret
Cons:

e Unrealistic inputs

e Improper accounting of interactive features

e (Can be computationally expensive

88



Feature*Gradient

Attribution to a feature is feature value times gradient, i.e., x* dy/ox.

e Gradient captures sensitivity of output w.r.t. feature
e Equivalent to Feature*Coefficient for linear models
o First-order Taylor approximation of non-linear models

e Popularized by SaliencyMaps [NIPS 2013], Baehrens et al. [JMLR 2010]

Gradients in the
vicinity of the input
seem like noise?
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Local linear approximations can be too local

A , : .
score . . uninteresting gradients
Interesting gradients (saturation)
10 |
0.0 .

“fireboat-ness” of image
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Score Back-Propagation based Methods

Re-distribute the prediction score through the neurons in the network

e LRP[UMLR 2017], DeepLift [ICML 2017], Guided BackProp [ICLR 2014]

1. forward computation
input T

output

Image credit heatmapping.org

Easy case: Output of a neuron is a linear function
. . _ .

of previous neurons (i.e,n. =3 w, nj)

e.g., the logit neuron

e Re-distribute the contribution in proportion to
the coefficients w,
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Score Back-Propagation based Methods

Re-distribute the prediction score through the neurons in the network

e LRP[UMLR 2017], DeepLift [ICML 2017], Guided BackProp [ICLR 2014]

Tricky case: Output of a neuron is a non-linear
function, e.g., ReLU, Sigmoid, etc.

1. forward computation
input T

output

e Guided BackProp: Only consider RelLUs that
are on (linear regime), and which contribute
positively

e LRP: Use first-order Taylor decomposition to
output linearize activation function

At A

e DeeplLift: Distribute activation difference
relative a reference point in proportion to

Image credit heatmapping.org edge weights 92



Score Back-Propagation based Methods

Re-distribute the prediction score through the neurons in the network

e LRP[UMLR 2017], DeepLift [ICML 2017], Guided BackProp [ICLR 2014]

1. forward computation

input > Pros:
' output e Conceptually simple
e Methods have been empirically validated to
yield sensible result

2. output redistribution CO ns.

-€
............... O ............... @ _______________ . - . e Hard to implement, requires instrumenting
= output
.‘-'-/:-t‘ ‘ -

the model
TN e Oy @ e Often breaks implementation invariance
OOl il Think: F(x,y,z) =x*y*z and

G(x,y,z) =x*(y*2)

&
M
)
\f 4

Image credit heatmapping.org



Baselines and additivity

e When we decompose the score via backpropagation, we imply a normative
alternative called a baseline

o “Why Pr(fireboat) = 0.91 [instead of 0.00]"

e Common choice is an informationless input for the model
o E.g., Black image for image models
o E.g., Empty text or zero embedding vector for text models

e Additive attributions explain F(input) - F(baseline) in terms of input features



Another approach: gradients at many points

uninteresting gradients

score Interesting gradients l (saturation)
10 |
intensity
0.0 >

Baseline ... scaled inputs ...

... gradients of scaled inputs ....




Integrated Gradients [ICML 2017]

Integrate the gradients along a straight-line path from baseline to input

[IG(input, base) ::= (input - base) * f V F(a*input + (1-a)*base) da }

Original image Integrated Gradients




Integrated Gradients in action
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Why is this image labeled as “clog™?

Original image “Clog”




Why is this image labeled as “clog™?

Original image Integrated Gradients “Clog”
(for label “clog”)




Detecting an architecture bug

e Deep network [Kearns, 2016] predicts if a molecule binds to certain DNA site

e Finding: Some atoms had identical attributions despite different connectivity




Detecting an architecture bug

e Deep network [Kearns, 2016] predicts if a molecule binds to certain DNA site

e Finding: Some atoms had identical attributions despite different connectivity

e Bug: The architecture had a bug due to which the convolved bond features
did not affect the prediction!



Detecting a data issue

e Deep network predicts various diseases from chest x-rays

L Integrated gradients
Original image (for top label)




Detecting a data issue

e Deep network predicts various diseases from chest x-rays

e Finding: Attributions fell on radiologist’s markings (rather than the pathology)

L Integrated gradients
Original image (for top label)

o - ———




Cooperative game theory in attributions
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Shapley Value [Annals of Mathematical studies,1953]

Classic result in game theory on distributing gain in a coalition game

e Coalition Games
o Players collaborating to generate some gain (think: revenue)

o  Set function v(S) determining the gain for any subset S of players



Shapley Value [Annals of Mathematical studies, 1953]

Classic result in game theory on distributing gain in a coalition game

e Coalition Games
o Players collaborating to generate some gain (think: revenue)
o  Set function v(S) determining the gain for any subset S of players

e Shapley Values are a fair way to attribute the total gain to the players based on
their contributions

o Concept: Marginal contribution of a player to a subset of other players (v(S U {i}) - v(S))

o Shapley value for a player is a specific weighted aggregation of its marginal over all
possible subsets of other players

Shapley Value for playeri=3._. w(S)* (v(S U {i}) - v(S))
(where w(S) = N!'/ S| (N - [S| -1)!)



Shapley Value Justification

Shapley values are unique under four simple axioms
e Dummy: If a player never contributes to the game then it must receive zero attribution
e Efficiency: Attributions must add to the total gain
e Symmetry: Symmetric players must receive equal attribution

e Linearity: Attribution for the (weighted) sum of two games must be the same as the
(weighted) sum of the attributions for each of the games



Shapley Values for Explaining ML models

SHAP [NeurlPS 2018], Qll [S&P 2016], Strumbelj & Konenko [JMLR 2009]

e Define a coalition game for each model input X
o Players are the features in the input
o Gain is the model prediction (output), i.e., gain = F(X)

e Feature attributions are the Shapley values of this game



Shapley Values for Explaining ML models

SHAP [NeurlPS 2018], Qll [S&P 2016], Strumbelj & Konenko [JMLR 2009]

e Define a coalition game for each model input X
o Players are the features in the input
o Gain is the model prediction (output), i.e., gain = F(X)

e Feature attributions are the Shapley values of this game

Challenge: Shapley values require the gain to be defined for all subsets of players
e What is the prediction when some players (features) are absent?

i.e., what is F(x_1, <absent>, x_3, ..., <absent>)?



Modeling Feature Absence

Key Idea: Take the expected prediction when the (absent) feature is sampled from
a certain distribution.

Different approaches choose different distributions
e [SHAP, NIPS 2018] Use conditional distribution w.r.t. the present features
e [QIl, S&P 2016] Use marginal distribution
e [Strumbelj et al., JMLR 2009] Use uniform distribution

Preprint: The Explanation Game: Explaining Machine Learning Models with Cooperative Game
Theory



https://arxiv.org/abs/1909.08128
https://arxiv.org/abs/1909.08128

Computing Shapley Values

Exact Shapley value computation is exponential in the number of features
e Shapley values can be expressed as an expectation of marginals
¢(i) = E5 _, [marginal(S, i)]
e Sampling-based methods can be used to approximate the expectation

e See: “Computational Aspects of Cooperative Game Theory”, Chalkiadakis et al. 2011

e The method is still computationally infeasible for models with hundreds of
features, e.g., image models



Non-atomic Games: Aumann-Shapley Values and |G

e Values of Non-Atomic Games (1974): Aumann and Shapley extend their
method — players can contribute fractionally

e Aumann-Shapley values calculated by integrating along a straight-line path...
same as Integrated Gradients!

e |G through a game theory lens: continuous game, feature absence is modeled
by replacement with a baseline value

e Axiomatically justified as a result:

o Integrated Gradients is the unique path-integral method satisfying: Sensitivity, Insensitivity,
Linearity preservation, Implementation invariance, Completeness, and Symmetry



Lessons learned: baselines are important

Baselines (or Norms) are essential to explanations [Kahneman-Miller 86]

e E.g., A man suffers from indigestion. Doctor blames it to a stomach ulcer. Wife blames
it on eating turnips. Both are correct relative to their baselines.

e The baseline may also be an important analysis knob.

Attributions are contrastive, whether we think about it or not.


https://pdfs.semanticscholar.org/9809/8ee48700173e2f09aeff48c406ef943918b5.pdf

Some limitations and caveats for attributions



Attributions don’t explain everything

Some things that are missing:
e Feature interactions (ignored or averaged out)
e \What training examples influenced the prediction (training agnostic)

e Global properties of the model (prediction-specific)

An instance where attributions are useless:

e A model that predicts TRUE when there are even number of black pixels and
FALSE otherwise



Attributions are for human consumption

e Humans interpret attributions and generate insights

o Doctor maps attributions for x-rays to pathologies

e Visualization matters as much as the attribution technique

Naive scaling of attributions Attributions have a large After clipping attributions

from O to 255 ;?:rrlg:s&;)rifelltsmg tail at 99% to reduce range

0.0045
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0.0030
0.0025
0.0020
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0.0005
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Other individual prediction explanation methods



Local Interpretable Model-agnostic Explanations

(Ribeiro et al. KDD 2016)

I

/
e
+

'@
4+ -4 @
-H. ® +
| ® ® ¢
I
/ ‘

!
Figure credit: Ribeiro et al. KDD 2016

28 < Age < 37
Workclass = Private
Education = High School grad
Marital Status = Married
Occupation = Blue-Collar
Relationship = Husband
Race = White
Sex = Male
Capital Gain = None
Capital Loss = Low
Hours per week < 40.00
Country = United-States

P(Salary > $50K) = 0.57

(a) Instance and prediction

Occupation = Blue Coll

Less than $50K More than $50K

0.16

0.15

(b) LIME explanation

Figure credit: Anchors: High-Precision Model-Agnostic

Explanations. Ribeiro et al. AAAI 2018
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Anchors

28 < Age < 37
Workclass = Private
Education = High School grad
Marital Status = Married
Occupation = Blue-Collar
Relationship = Husband
Race = White
Sex =Male
Capital Gain = None
Capital Loss = Low
Hours per week < 40.00
Country = United-States

P (Salary > $50K) = 0.57

(a) Instance and prediction

Less than $50K

Capital Gain = None

023

Hours per week <=
0.16

Occupation = Blue Coll
0.15

Ed = High School grad
0.10

More than $50K
Married

(b) LIME explanation

IF Country = United-States AND Capital Loss = Low
AND Race = White AND Relationship = Husband
AND Married AND 28 < Age < 37

AND Sex = Male AND High School grad

AND Occupation = Blue-Collar

THEN PREDICT Salary > $50K

(c) An anchor explanation

Figure credit: Anchors: High-Precision Model-Agnostic Explanations. Ribeiro et al. AAAI 2018
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Influence functions

e Trace a model’s prediction through the learning algorithm and
back to its training data
e Training points “responsible” for a given prediction

Test image

Figure credit: Understanding Black-box Predictions via Influence Functions. Koh and Liang. ICML 2017
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Example based Explanations

Prototypes Prototypes

Learned prototypes and criticisms from Imagenet dataset (two types of dog breeds)

e Prototypes: Representative of all the training data.

e Criticisms: Data instance that is not well represented by the set of prototypes.

Figure credit: Examples are not Enough, Learn to Criticize! Criticism for Interpretability. Kim, Khanna and Koyejo. NIPS 2016 121



Global Explanations
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Global Explanations Methods

Partial Dependence Plot: Shows
the marginal effect one or two features
have on the predicted outcome of a
machine learning model
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Global Explanations Methods

Permutations: The importance of a feature is the increase in the prediction error of the model
after we permuted the feature’s values, which breaks the relationship between the feature and the

true outcome.

state_California

w

49

50

RDSpend  Administration MarketingSpend Profit
165349.2 136897.8 4717841 192261.83
162597.7 151377.59 443898.53 191792.06
153441.51 101145.55 40793454 191050.39

0 135426.92 0
542.05 5174315 0
0 116983.8 45173.06

Random Shuffle of the first feature

42559.73

35673.41

14681.4

0

1

1
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Achieving Explainable Al

Approach 2: Build an interpretable model

e Logistic regression, Decision trees, Decision lists and sets, Generalized Additive
Models (GAMs)
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Decision Trees

Is the person fit?

Optimal Sparse Decision Trees

Ag e < 3 0 ? Xiyang Hu', Cynthia Rudin?, Margo Seltzer3*

Carnegie Mellon University, xiyanghu@cmu. edu
2Duke University, cynthia@cs. duke. edu

Yey XIN o 3The University of British Columbia, mseltzer@cs.ubc.ca

Eats a lot of pizzas?

Exercises in the morning?

Yes No
Yes No

Unfit Fit Fit Unfit
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Decision Set

If Allergies =Yes and Smoker =Yes and Irregular-Heartbeat =Yes, then Asthma

If Allergies =Yes and Past-Respiratory-Illness =Yes and Avg-Body-Temperature > 0.1, then Asthma

If Smoker =Yes and BMI > 0.2 and Age > 60, then Diabetes

If Family-Risk-Diabetes =Yes and BMI > 0.4 =Frequency-Infections > 0.2, then Diabetes

If Frequency-Doctor-Visits > 0.4 and Childhood-Obesity =Yes and Past-Respiratory-Illness =Yes, then Diabetes
If Family-Risk-Depression =Yes and Past-Depression =Yes and Gender =Female, then Depression

If BMI > 0.3 and Insurance-Coverage =None and Avg-Blood-Pressure > 0.2, then Depression

If Past-Respiratory-Illness =Yes and Age > 50 and Smoker =Yes, then Lung Cancer

If Family-Risk-LungCancer =Yes and Allergies =Yes and Avg-Blood-Pressure > 0.3, then Lung Cancer

If Disposition-Tiredness =Yes and Past-Anemia =Yes and BMI > 0.3 and Rapid-Weight-Loss = Yes, then Leukemia
If Family-Risk-Leukemia = Yes and Past-Blood-Clotting =Yes and Frequency-Doctor-Visits > 0.3, then Leukemia

If Disposition-Tiredness =Yes and Irregular-Heartbeat =Yes and Short-Breath-Symptoms =Yes and Abdomen-Pains =Yes, then Myelofibrosis

Figure credit: Interpretable Decision Sets: A Joint Framework for Description and Prediction, Lakkaraju, Bach,

Leskovec 127



Decision Set

A Bayesian Framework for Learning Rule Sets for Interpretable

Classification
Tong Wang TONG-WANG @UIOWA.EDU University of lowa
Cynthia Rudin CYNTHIA @ CS.DUKE.EDU Duke University
Finale Doshi-Velez FINALE @SEAS.HARVARD.EDU Harvard University
Yimin Liu LIUYIMIN2000 @ GMAIL.COM Edward Jones
Erica Klampfl EKLAMPFL @ FORD.COM Ford Motor Company
Perry MacNeille PMACNEIL @FORD.COM Ford Motor Company
Editor: Maya Gupta
Abstract

We present a machine learning algorithm for building classifiers that are comprised of a small num-
ber of short rules. These are restricted disjunctive normal form models. An example of a classifier
of this form is as follows: If X satisfies (condition A AND condition B) OR (condition C) OR
---,then Y = 1. Models of this form have the advantage of being interpretable to human experts
since they produce a set of rules that concisely describe a specific class. We present two proba-
bilistic models with prior parameters that the user can set to encourage the model to have a desired
size and shape, to conform with a domain-specific definition of interpretability. We provide a scal-
able MAP inference approach and develop theoretical bounds to reduce computation by iteratively
pruning the search space. We apply our method (Bayesian Rule Sets — BRS) to characterize and
predict user behavior with respect to in-vehicle context-aware personalized recommender systems.
Our method has a major advantage over classical associative classification methods and decision
trees in that it does not greedily grow the model.
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Decision List

If Past-Respiratory-Illness =Yes and Smoker =Yes and Age > 50, then Lung Cancer
Else if Allergies =Yes and Past-Respiratory-Illness =Yes, then Asthma

Else if Family-Risk-Respiratory =Yes, then Asthma

Else if Family-Risk-Depression =Yes, then Depression

Else if Gender =Female and Short-Breath-Symptoms =Yes, then Asthma

Else if BMI > 0.2 and Age> 60, then Diabetes

Else if Frequent-Headaches =Yes and Dizziness =Yes, then Depression

Else if Frequency-Doctor-Visits > 0.3, then Diabetes

Else if Disposition-Tiredness =Yes, then Depression

Else if Chest-Pain =Yes and Nausea and Yes, then Diabetes

Else Diabetes

Figure credit: Interpretable Decision Sets: A Joint Framework for Description and Prediction, Lakkaraju, Bach,

Leskovec 129



Falling Rule List

A falling rule list is an ordered list of if-then rules (falling rule lists are a type of
decision list), such that the estimated probability of success decreases
monotonically down the list. Thus, a falling rule list directly contains the
decision-making process, whereby the most at-risk observations are classified
first, then the second set, and so on.

Conditions Probability Support
IF IrregularShape AND Age > 60 THEN malignancy risk is  85.22% 230
ELSE IF  SpiculatedMargin AND Age > 45 THEN malignancy risk is  78.13% 64
ELSE IF IllDefinedMargin AND Age > 60 THEN malignancy risk is 69.23% 39
ELSE IF IrregularShape THEN malignancy risk is  63.40% 153
ELSE IF LobularShape AND Density > 2  THEN malignancy risk is  39.68% 63
ELSE IF RoundShape AND Age > 60 THEN malignancy risk is  26.09% 46
ELSE THEN malignancy risk is  10.38% 366

Falling rule list for mammographic mass dataset.
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Box Drawings for Rare Classes

100

80 &

60

40¢

dimension 2

50
dimension 1

Figure credit: Box Drawings for Learning with Imbalanced. Data Siong Thye Goh and Cynthia Rudin .



Supersparse Linear Integer Models for Optimized
Medical Scoring Systems

PREDICT PATIENT HAS OBSTRUCTIVE SLEEP APNEA IF SCORE >1

1. age > 60 4 points | .-
2.  hypertension 4 points | + ------
3. body mass index > 30 2 points | + e----
4. body mass index > 40 2 points | + ------
5. female -6 points | + ------

ADD POINTS FROM ROWS1-5 SCORE | = -----.

SLIM scoring system for sleep apnea screening. This model achieves a 10-CV mean test TPR/FPR of
61.4/20.9%, obeys all operational constraints, and was trained without parameter tuning. It also generalizes
well due to the simplicity of the hypothesis space: here the training TPR/FPR of the final model is 62.0/19.6%.

Figure credit: Supersparse Linear Integer Models for Optimized Medical Scoring Systems. Berk Ustun and Cynthia Rudin
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K- Nearest Neighbors

Y-Axis

Initial Data
New example

to classify Class A

* Class B
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Fmdmg Neighbors & Voting for Labels
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v
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Explanation in terms of nearest training
data points responsible for the decision
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GLMs and GAMs

Model Form Intelligibility | Accuracy
Linear Model y=PBo+ P1x1+ ...+ Bnxn +++ +
Generalized Linear Model | g(y) = Bo + fix1 + ... + Bnn +++ +
Additive Model y= fi(x1) + ... + fn(xn) ++ ++
Generalized Additive Model | g(y) = fi(z1) + ... + fn(zn) ++ ++
Full Complexity Model Y= T ; syl ) + +++

Intelligible Models for Classification and Regression. Lou, Caruana and Gehrke KDD 2012

Accurate Intelligible Models with Pairwise Interactions. Lou, Caruana, Gehrke and Hooker. KDD 2013

134



Explainable Machine Learning

(from a Knowledge Graph Perspective)

Freddy Lécué: On the role of knowledge grapg%n
explainable Al. Semantic Web 11(1): 41-51 (2020)



Knowledge Graph (1)

e Set of (subject, predicate, object — SPO) triples - subject and object are
entities, and predicate is the relationship holding between them.

e [Each SPO triple denotes a fact, i.e. the existence of an actual relationship
between two entities.

Alice Leonardo Da Vinci
subject predicate object @ |@

Bob is interested in The Mona Lisa /7' -
Bob is a friend of Alice s /

The Mona Lisa was created by Leonardo Da Vinci ‘ ‘
Bob is a Person a8 4%

The Mona Lisa >
La Joconde a W. is about The Mona Lisa \&

Bob is born on 14 July 1990 ®

Person 14 July 1990 e .
La Joconde a Washington

Freddy Lécué: On the role of knowledge graphs in
explainable Al. Semantic Web 11(1): 41-51 (2020)



Knowledge Graph (2)

Name Entities | Relations | Types | Facts
Freebase 40M 35K 26.5K 637M
DBpedia (en) 4.6M 1.4K 735 580M
YAGO3 17M 77 488K  150M
Wikidata 15.6M 1.7K 23.2K 66M
NELL 2M 425 285 433K
Google KG 570M 35K 1.5K 18B
Knowledge Vault 45M 4.5K 11K 271M
Yahoo! KG 3.4M 800 250 1.39B

e Manual Construction - curated, collaborative
e Automated Construction - semi-structured, unstructured

Right: Linked Open Data cloud - over 1200 interlinked KGs
encoding more than 200M facts about more than 50M entities.

Spans a variety of domains - Geography, Government, Life
Sciences, Linguistics, Media, Publications, Cross-domain..

Freddy Lécué: On the role of knowledge graphs in
explainable Al. Semantic Web 11(1): 41-51 (2020)



Knowledge Graph Construction

Knowledge Graph construction methods can be classified in:

e Manual — curated (e.g. via experts), collaborative (e.g. via volunteers)

e Automated — semi-structured (e.g. from infoboxes), unstructured (e.g. from text)
Coverage is an issue:

e Freebase (40M entities) - 71% of persons without a birthplace, 75% without a
nationality, even worse for other relation types [Dong et al. 2014]

e DBpedia (20M entities) - 61% of persons without a birthplace, 58% of scientists
missing why they are popular [KrompaB et al. 2015]

Relational Learning can help us overcoming these issues.

Freddy Lécué: On the role of knowledge graphs in
explainable Al. Semantic Web 11(1): 41-51 (2020)



Knowledge Graph in Machine Learning (1)

https://stats.stackexchange.com/questions/230581/decisio

Freddy Lécué: On the role of knowledge graphs in
explainable Al. Semantic Web 11(1): 41-51 (2020)

n-tree-too-large-to-interpret



https://stats.stackexchange.com/questions/230581/decision-tree-too-large-to-interpret
https://stats.stackexchange.com/questions/230581/decision-tree-too-large-to-interpret

Knowledge Graph in Machine Learning (2)

https://stats.stackexchange.com/questions/230581/decisio

Freddy Lécué: On the role of knowledge graphs in
explainable Al. Semantic Web 11(1): 41-51 (2020)

n-tree-too-large-to-interpret



https://stats.stackexchange.com/questions/230581/decision-tree-too-large-to-interpret
https://stats.stackexchange.com/questions/230581/decision-tree-too-large-to-interpret

Knowledge Graph in Machine Learning

@ Input Layer Training
Data

Neurons respond
to simple shapes

Neurons respond to
more complex "

structures

(0 Hidden Layer

Neurons respond to
highly complex,

abstract concepts
@ Output Layer *.

10% WOLF 90% DOG

y

(3)

Low-leyel
featurés to
high*level
featu res

Freddy Lécué: On the role of knowledge graphs in
explainable Al. Semantic Web 11(1): 41-51 (2020)



Knowledge Graph in Machine Learning (4)

@ 'nput Layer Training ..
Data e,
Input
(unlabeled < ---...
image) Tt
Neurons respond Low-level
- to simple shapes i '
o 1t Layer features to *
> A *
3 (o} ViwX YA | et
- more complex 2" Layer -
I structures
® Neurons respond to
: th
highly complex, G @ n™ Layer
abstract concepts ‘
@ Output Layer ‘ é . - Freddy Lécué: On the role of knowledge graphs in
10% WOLF %nos Lo explainable Al. Semantic Web 11(1): 41-51 (2020)



Knowledge Graph in Machine Learning (5)

Description 1: This is an orange train accident <& -

Description 2: This is a train accident between two speed
merchant trains of characteristics X43-B and Y33-Cin a dry
environment

Description 3: This is a public transportation accident <& = *°

Freddy Lécué: On the role of knowledge graphs in
explainable Al. Semantic Web 11(1): 41-51 (2020)



Knowledge Graph in Machine Learning (6)

“How to explain transfer learning with

appropriate knowledge representation?

Proceedings of the Sixteenth International Conference on Principles of Jiaoyan Chen Freddy Lecue
Knowledge Representation and Reasoning (KR 2018) : Department of Computer Science © INRIA, France
2 University of Oxford, UK : Accenture Labs, Ireland

Jeff Z. Pan lan Horrocks

Knowledge-Based Transfer Learning Explanation Department of Computer Science . Department of Computer Science
: University of Aberdeen, UK © University of Oxford, UK

Huajun Chen
College of Computer Science, Zhejiang University, China
Alibaba-Zhejian University Frontier Technology Research Center
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in Practice?
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Unfortunately, this is of
NO use for a human
behind the system



Let’s stay back

Why this Explanation?
(meta explanation)



After Human Reasoning...

Lumbermill - .59

& M ® Browse using v

dbo:wikiPagelD
dbo:wikiPageRevisionlD

det:subject

http://purl.org/linguistics/gold/hypernym

rdf:type

rdfs:comment

rdfs:label

owl:sameAs

I Formats ~ (% Faceted Browser (4 Sparql Endpoint

352327 (xsd:integer)
734430894 (xsd:integer)

dbc:Sawmills

dbc:Saws
dbc:Ancient_Roman_technology
dbc:Timber_preparation

dbe:Timber_industry
dbr:Facility

owl:Thing

dbo:ArchitecturalStructure

A sawmill or lumber mill is a facility where logs are cut into lumber. Prior to the invention of the sawmill, boards were rived (split) and
planed, or more often sawn by two men with a whipsaw, one above and another in a saw pit below. The earliest known mechanical
mill is the Hierapolis sawmill, a Roman water-powered stone mill at Hierapolis, Asia Minor dating back to the 3rd century AD. Other
water-powered mills followed and by the 11th century they were widespread in Spain and North Africa, the Middle East and Central
Asia, and in the next few centuries, spread across Europe. The circular motion of the wheel was converted to a reciprocating motion
at the saw blade. Generally, only the saw was powered, and the logs had to be loaded and moved by hand. An early improvement
was the developm (en)

Sawmill (en)

wikidata:Sawmill
dbpedia-cs:Sawmill
dbpedia-de:Sawmill

dbpedia-es:Sawmill



What is missing?




| tmatters

- -

Railway - .11

&“‘lm ®Browseusing ~ [l Formats ~ C Faceted Browser (& Spargl Endpoint

About: Boulder

An Entity of Type : place, from Named Graph : htp://dbpedia.org, within Data Space : dbpedia.org

In geology, a boulder is a rock fragment with size greater than 25.6 centimetres (10.1 in) in diameter. Smaller pieces are called
cobbles and pebbles, depending on their "grain size". While a boulder may be small enough to move or roll manually, others are
extremely massive. In common usage, a boulder is too large for a person to move. Smaller boulders are usually just called

nes. The word boulder is short for boulder stone, from Middle English b i 1. Boulder size
found in sorr dimentary rocks, s C conglomerate and boulder ¢

Property Value

dbo:abstract In geology, a boulder is a rock fragment with size greater than 25.6 centimetres (10.1 in) in diameter. Smaller pieces are called
cobbles and pebbles, depending on their "grain size". While a boulder may be small enough to move or roll manually, others are
extremely massive. In common usage, a boulder is too large for a person to move. Smaller boulders are usually just called rocks o
stones. The word boulder is short for boulder stone, from Middle English bulderston or Swedish bullersten. In places covered by ice
sheets during Ice Ages, such as Scandinavia, northern North America, and Russia, glacial erratics are common. Erratics are
boulders picked up by the ice sheet during its advance, and deposited during its retreat. They are called "erratic" because they
typically are of a different rock type than the bedrock on which they are deposited. One of them is used as the pedestal of the
Bronze Horseman in Saint Petersburg, Russia. Some noted rock formations involve giant boulders exposed by erosion, such as the
Devil's Marbles in Australia's Northern Territory, the Horeke basalts in New Zealand, where an entire valley contains only boulders,
and The Baths on the island of Virgin Gorda in the British Virgin Islands. Boulder sized clasts are found in some sedimentary rocks,
such as coarse conglomerate and boulder clay. The climbing of large boulders is called bouldering. (en)

dbosthumbnail = wiki-commons:Special:FilePath/Balanced_Rock jpg?width=300
dvo:wikiPagelD - 60784 rsdintoger)
dbo:wikiPageRevisionID - 743049914 rsctinteger

det:subject = dbeiRock_formations

= dbciRocks

S DBpedia  ©sowseusng - b Formats + © Faceted Browser (5 Sparg) Endpoint

About: Rail transport

An Entity of Type : software, from Named Graph : http://dbpedia.org, within Data Space : dbpedia.org

means of conveyance of passengers and goods on wheel S running on rails, also known

also commonly referred to as train transport. In contrast to road transport, where vehicles run on a prepared flat surfa
vehicles (rolling stock) are directionally guided by the tracks on which they run. Tracks usually consist of steel rails, installed on ties

rs) and ballast, on which the rolling stock, usually fitted with metal wheels, moves. Other variations are also possible, such
where the rails are fastened to a concrete foundation

Value

dvo:abstract Rail transport is a means of conveyance of passengers and goods on wheeled vehicles running on rails, also known as tracks. It is
also commonly referred to as train transport. In contrast to road transport, where vehicles run on a prepared flat surface, rail vehicles
(rolling stock) are directionally guided by the tracks on which they run. Tracks usually consist of steel rails, installed on ties (sleepers)
and ballast, on which the rolling stock, usually fitted with metal wheels, moves. Other variations are also possible, such as slab track,
where the rails are fastened to a concrete foundation resting on a prepared subsurface. Rolling stock in a rail transport system
generally encounters lower frictional resistance than road vehicles, so passenger and freight cars (carriages and wagons) can be
coupled into longer trains. The operation is carried out by a railway company, providing transport between train stations or freight
customer facilities. Power is provided by locomotives which either draw electric power from a railway electrification system or
produce their own power, usually by diesel engines. Most tracks are accompanied by a signalling system. Railways are a safe land
transport system when compared to other forms of transport. Railway transport is capable of high levels of passenger and cargo
utilization and energy efficiency, but is often less flexible and more capital-intensive than road transport, when lower traffic levels are
considered. The oldest, man-hauled railways date back to the 6th century BC, with Periander, one of the Seven Sages of Greece,



* Hardware: High performance, scalable, generic (to different
FGPA family) & portable CNN dedicated programmable
processor implemented on an FPGA for real-time embedded
inference

Software: Knowledge graph extension of object detection
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This is an Obstacle: Boulder obstructing the train: N
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Knowledge Graph

Images
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[ Score Augmentation

Augmented Detections

iIn Machine Learning - An Implementation

Freddy Lécué, Jiaoyan Chen, Jeff Z. Pan,
Huajun Chen: Augmenting Transfer
Learning with Semantic Reasoning. 1JCAI
2019: 1779-1785

Freddy Lécué, Tanguy Pommellet: Feeding
Machine Learning with Knowledge Graphs
for Explainable Object Detection. ISWC
Satellites 2019: 277-280

Freddy Lécué, Baptiste Abeloos, Jonathan
Anctil, Manuel Bergeron, Damien
Dalla-Rosa, Simon Corbeil-Letourneau,
Florian Martet, Tanguy Pommellet, Laura
Salvan, Simon Veilleux, Maryam Ziaeefard:
Thales XAl Platform: Adaptable
Explanation of Machine Learning Systems -
A Knowledge Graphs Perspective. ISWC
Satellites 2019: 315-316

Jiaoyan Chen, Freddy Lécué, Jeff Z. Pan, lan
Horrocks, Huajun Chen: Knowledge-Based
Transfer Learning Explanation. KR 2018:
349-358
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and Research Challenges
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https://docs.google.com/file/d/1F117aAoNk7MQMC52B6FL5-xErkj3ruA2/preview

Explainable Boosted Object Detection — Industry Agnostic

Training Training
Dataset Process

Pre-traine;
model

Task ﬂ, Object Detection

Model

Knowledge

Augmentati .|

Augmentation

First step of Confidence

detections Dictionnary

of Context

Graph Selection

Labels T

Selected KG,
Labels

Knowledge
Graphs

Generation

Augmented
detections

" 'Paddle’ confidence is
augmented as class 'Boat' and
‘Canoe’. are in both (1) image
and (2) as properties range of
Paddle in knowledge graph"

Explainable Layer

Fig. 2. Left image: results from baseline Faster RCNN: Paddle: 50% confidence, Per-

son: 66%, Man: 46%. Right image: results from the semantic augmentation: Paddle:
74% confidence, Person: 66%, Man: 56%, Boat: 58% with explanation: Person,
Paddle, Water as part of the context in the image and knowledge graph of

concept Boat. (color print).

Challenge: Object detection is usually performed from a
large portfolio of Artificial Neural Networks (ANNSs)
architectures trained on large amount of labelled data.
Explaining object detections is rather difficult due to the
high complexity of the most accurate ANNSs.

Al Technology: Integration of Al related technologies
i.e., Machine Learning (Deep Learning / CNNs), and
knowledge graphs / linked open data.

XAl Technology: Knowledge graphs and Artificial Neural
Networks

THALES



Explainable Al Models space New analyse @

Th a Ies XAI Explainable Artificial Intelligence
Platform '

How the app works ?

>

Context

Explanation in Machine Learning systems has been identified to be
the one asset to have for large scale deployment of Artificial
Intelligence (Al) in critical systems

Explanations could be example-based (who is similar), features-based
(what is driving decision), or even counterfactual (what-if scenario) to
potentially action on an Al system; they could be represented in many
different ways e.g., textual, graphical, visual

Goal

All representations serve different means, purpose and operators. We
designed the first-of-its-kind XAl platform for critical systems i.e., the
Thales Explainable Al Platform which aims at serving explanations
through various forms

Approach: Model-Agnostic

[Al:ML] Grad-Cam, Shapley, Counter-factual, Knowledge graph

THALES

VISUA

counterfactual

THALES
eXplainable Artficial Intelligence

VISUALIZATIONS

sve

counterfactual

lads

SCORE

@ o savod oxlanaions




xai.thalesdigitalsolutions.com
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#1: Explaining Image Classification
Data: Image - XAl: Saliency Masks



https://docs.google.com/file/d/1zoKidieGH5zaahOn8ekXXBo74BEeZvc-/preview

Debugging Artificial Neural Networks — Industry Agnostic
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Challenge: Designing Artificial Neural Network
architectures requires lots of experimentation
(i.e., training phases) and parameters tuning
(optimization strategy, learning rate, number of
layers...) to reach optimal and robust machine
learning models.

Al Technology: Artificial Neural Network

XAl Technology: Artificial Neural Network, 3D
Modeling and Simulation Platform For Al
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https://docs.google.com/file/d/1ZTwndNzC9bN9ouP9cjjuXcyzZ3OYIcgU/preview

Obstacle Identification Certification (Trust) - Transportation

THALES

Challenge: Public transportation is getting more and more
self-driving vehicles. Even if trains are getting more and more
autonomous, the human stays in the loop for critical decision,
for instance in case of obstacles. In case of obstacles trains
are required to provide recommendation of action i.e., go on
or go back to station. In such a case the human is required to
validate the recommendation through an explanation exposed
by the train or machine.

Al Technology: Integration of Al related technologies i.e.,
Machine Learning (Deep Learning / CNNs), and semantic
segmentation.

XAl Technology: Deep learning and Epistemic uncertainty




Explaining Flight Performance- Transportation

Challenge: Predicting and explaining
aircraft engine performance

Al Technology: Artificial Neural Networks

T H /0\ L E 5 XAl Technology: Shapely Values




Explainable On-Time Performance - Transportation

KLM / Transavia Flight Delay Prediction

PLANE INFO ARRIVAL TURNAROUND DEPARTURE

Status / Aircraft Flight ETA Status Delay Code Gate Slot Progress Milestones Flight ETA  Status Delay Code
© wntwer v ER
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Jiaoyan Chen, Freddy Lécué, Jeff Z. Pan, lan Horrocks, Huajun Chen: Knowledge-Based Transfer
Learning Explanation. KR 2018: 349-358

Nicholas McCarthy, Mohammad Karzand, Freddy Lecue: Amsterdam to Dublin Eventually Delayed?
LSTM and Transfer Learning for Predicting Delays of Low Cost Airlines: AAAI 2019

Challenge: Globally 323,454 flights are delayed every year.
Airline-caused delays totaled 20.2 million minutes last year,
generating huge cost for the company. Existing in-house
technique reaches 53% accuracy for predicting flight delay,
does not provide any time estimation (in minutes as opposed
to True/False) and is unable to capture the underlying
reasons (explanation).

Al Technology: Integration of Al related technologies i.e.,
Machine Learning (Deep Learning / Recurrent neural
Network), = Reasoning (through  semantics-augmented
case-based reasoning) and Natural Language Processing for
building a robust model which can (1) predict flight delays in
minutes, (2) explain delays by comparing with historical
cases.

XAl Technology: Knowledge graph embedded Sequence
Learning using LSTMs

INNOVATION ARCHITECTURE:

ACCENTU
LABS

THALES



Explainable Risk Management - Finance

Portfolio 1 Portfolio Overview Joha Smith

All Contracts (123) Contract Lifecycle
(®) Negative EAC Estimate View all Contracts »
Net Potential Loss
5% @ o o
% L 0 ° P &
>2% 0o o °
0 & 0
o
0 o o
>0%
Oo 0
o
0% 100%

Contract Start Contract End

Revenue [size) Newly Added

low high

Jiewen Wu, Freddy Lécué, Christophe Guéret, Jer Hayes, Sara van de Moosdijk, Gemma
Gallagher, Peter McCanney, Eugene Eichelberger: Personalizing Actions in Context for Risk

Management Using Semantic Web Technologies. International Semantic Web Conference (2)

2017:367-383

INNOVATION ARCHITECTURE:

ACCENTU
LABS

Challenge: Accenture is managing every year more than
80,000 opportunities and 35,000 contracts with an expected
revenue of $34.1 billion. Revenue expectation does not
meet estimation due to the complexity and risks of critical
contracts. This is, in part, due to the (1) large volume of
projects to assess and control, and (2) the existing
non-systematic assessment process.

Al Technology: Integration of Al technologies i.e., Machine
Learning, Reasoning, Natural Language Processing for
building a robust model which can (1) predict revenue loss,
(2) recommend corrective actions, and (3) explain why such
actions might have a positive impact.

XAl Technology: Knowledge graph embedded Random
Forrest



Explainable Anomaly Detection — Finance (Compliance)

INNOVATION ARCHITECTURE:

AF S Accenturs inteiligent F nance System sccentwre — ACCENTU
§ o inn i + S LABS
i . D ‘ 1 Data analysis
B - ™ - for spatial interpretation
- e
@‘- of abnormalities:
a = Wl abnormal expenses

Semantic explanation
(structured in classes:
fraud, events, seasonal)
of abnormalities

«i!

Detailed semantic
exiF:ZT]itlggs(:ter:(:ured Freddy Lécué, Jiewen Wu: Explaining and predicting abnormal
t ies f 'gt' expenses at large scale using knowledge graph based
< ; categories for events) reasoning. J. Web Sem. 44: 89-103 (2017)

Challenge: Predicting and explaining abnormally employee expenses (as high accommodation price in 1000+ cities).

Al Technology: Various techniques have been matured over the last two decades to achieve excellent results. However most methods address the problem
from a statistic and pure data-centric angle, which in turn limit any interpretation. We elaborated a web application running live with real data from (i) travel and

expenses from Accenture, (ii) external data from third party such as Google Knowledge Graph, DBPedia (relational DataBase version of Wikipedia) and social
events from Eventful, for explaining abnormalities.

XAl Technology: Knowledge graph embedded Ensemble Learning



Counterfactual Explanations for Credit Decisions (3) - Finance

Sorry, your loan application has been rejected.

Our analysis:

The following features

s e e
D S

The following features

o
— ; '
- 'y v
The following features l . I I

MaxDelg2Publicit @ e Tracion et Wi Ot P e Wt P W b DV i W Sty

B rovtvaue ) Increase By [ Decrease Dy

Counterfactuals suggest where to increase (green, dashed) or decrease (red, striped) each feature.

Rory Mc Grath, Luca Costabello, Chan Le Van, Paul Sweeney, Farbod Kamiab, Zhao Shen, Freddy Lécué: Interpretable Credit Application Predictions With Counterfactual Explanations.
FEAP-Al4fin workshop, NeurlPS, 2018.




Explanation of Medical Condition Relapse — Health

THALES Challenge: Explaining medical condition relapse in the
context of oncology.

Al Technology: Relational learning

XAl Technology: Knowledge graphs and Artificial Neural
Networks

Knowledge graph
parts explaining
medical condition
relapse




Case Study:

Linked [} Talent Search
Varun Mithal, Girish Kathalagiri, Sahin Cem Geyik
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LinkedIn Recruiter

e Recruiter Searches for Candidates
o Standardized and free-text search criteria o okl

e Retrieval and Ranking e
o Filter candidates using the criteria
o Rank candidates in multiple levels using ML

&)
?

models - y e ——
| @

Praduct Desgner

Interaction Desigrer  +
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Modeling Approaches

e Pairwise XGBoost
o GLMix
e DNNs via TensorFlow

e Optimization Criteria: inMail Accepts
o Positive: inMail sent by recruiter, and positively responded by candidate
m Mutual interest between the recruiter and the candidate

176



Feature Importance in XGBoost

FEATURE IMPORTANCE (VALIDATION) Top 20
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How We Utilize Feature Importances for GBDT

e Understanding feature digressions
o  Which a feature that was impactful no longer is?
o Should we debug feature generation?
e Introducing new features in bulk and identifying effective ones
o  An activity feature for last 3 hours, 6 hours, 12 hours, 24 hours introduced (costly to compute)
o Should we keep all such features?
e Separating the factors for that caused an improvement
o Did an improvement come from a new feature, or a new labeling strategy, data source?
o Did the ordering between features change?

e Shortcoming: A global view, not case by case
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GLMix Models

e Generalized Linear Mixed Models

©  Global: Linear Model g( P(r,c,re,ca,co) )= ﬁglobal “Jatr+  Pre- fau

o  Per-contract: Linear Model —_—
o Per-recruiter: Linear Model Positive Response Prob. Global model  Per-recruiter model
+  Peo- fall
~———

Per-contract model

e |ots of parameters overall
o For a specific recruiter or contract the weights can be summed up

e Inherently explainable
o  Contribution of a feature is “weight x feature value”
o Can be examined in a case-by-case manner as well
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TensorFlow Models in Recruiter and Explaining Them

e We utilize the Integrated Gradients [ICML 2017] method

e How do we determine the baseline example?

Every query creates its own feature values for the same candidate

Query match features, time-based features

Recruiter affinity, and candidate affinity features

A candidate would be scored differently by each query

Cannot recommend a “Software Engineer” to a search for a “Forensic Chemist”
There is no globally neutral example for comparison!

o O O O O O
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Query-Specific Baseline Selection

e For each query:
o Score examples by the TF model
o Rank examples
o Choose one example as the baseline
o Compare others to the baseline example

e How to choose the baseline example

o Last candidate

o  Kth percentile in ranking

o Arandom candidate

o Request by user (answering a question like: “Why was | presented candidate x above

candidate y?”)
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Example

2.00E+00

1.00E+00

0.00E+00

-1.00E+00

-2.00E+00

-3.00E+00




Example - Detailed

Feature Description Difference (1 vs 2) Contribution

Feature.......... Description.......... -2.0476928 -2.144455602
Feature.......... Description.......... -2.3223877 1.903594618

Feature.......... Description.......... 0.11666667 0.2114946752
Feature.......... Description.......... -2.1442587 0.2060414469
Feature.......... Description.......... -14 0.1215354111

Feature.......... Description.......... 1 0.1000282466
Feature.......... Description.......... -92 -0.085286277
Feature.......... Description.......... 0.9333333 0.0568533262
Feature.......... Description.......... -1 -0.051796317
Feature.......... Description.......... -1 -0.050895940
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Pros & Cons

e Explains potentially very complex models

e (Case-by-case analysis

o  Why do you think candidate x is a better match for my position?
o  Why do you think | am a better fit for this job?

o  Why am | being shown this ad?

o Great for debugging real-time problems in production

e Global view is missing

o Aggregate Contributions can be computed
o Could be costly to compute
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Lessons Learned and Next Steps

e Global explanations vs. Case-by-case Explanations

o Global gives an overview, better for making modeling decisions
o Case-by-case could be more useful for the non-technical user, better for debugging

e Integrated gradients worked well for us
o Complex models make it harder for developers to map improvement to effort
o Use-case gave intuitive results, on top of completely describing score differences

e Next steps
o Global explanations for Deep Models
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Case Study:

Model Interpretation for Predictive Models in B2B
Sales Predictions

Jilei Yang, Wei Di, Songtao Guo

Linked [T}

186



Problem Setting

e Predictive models in B2B sales prediction

o E.g.: random forest, gradient boosting, deep neural network, ...
o High accuracy, low interpretability

e Global feature importance — Individual feature reasoning
® What are top driver features for a certain company to
have high/low probability to upsell/churn?
(@ Feature Contributor ‘
® Which top driver features can be perturbed if we want
to increase/decrease probability for a certain company?
|/® Feature Influencer ‘
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Example

Company: CompanyX

Upsell LCP (LinkedIn Career Page) Top Feature Contributor
~ | o f1: 430.5
Q f2: 216
TR = o 9 13:10097.57
ot Likely | Less Likely Likely O f4: 15

0 0.25 0.5 0.75 1
Top Feature Influencer (Positive) Top Feature Influencer (Negative)

f5:0==5.4, 7003 f1: 430.5 —148.7, \, 0.20

f6: 168 = 0, //0.03 f2: 216=0, \\ 0.17

f7:0==0.24, /0.02 f8: 423=146.0, \, 0.07
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Revisiting LIME

e Given atarget sample x,, approximate its prediction pred(x,) by building a

sample-specific linear model:

pred(X) =B, X, + B, X, + .., X € neighbor(x,)

E.g., for company CompanyX:
0.76 = 1.82%0.17 +1.61*0.11+..

T

T

influence

pred(xy) || Br1 (scarled)
f1
Feature

Bica

(scéled)

f2

contribution

Feature
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XLIME

TN

Piecewise Linear Localized Stratified
Regression Sampling
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Piecewise Linear Regression

Motivation: Separate top positive feature influencers and top negative feature influencers

1 prediction _ / prediction
. // o
yd Bic1
/‘/"/ B
//
target sample x;, = (Xgq1, X2, "+ )
(x)_= min(x, 0) ® target sample
(x)+= max(x, 0)
feature 1
LIME xLIME
pred(X) = By1 Xy + -+, pred(X) = Biy (X1 — Xp1)-
X € neighbor(x) +Bier (X1 — X)) 4 + -,

X € neighbor(xy) 191



Impact of Piecewise Approach

e Target sample x,=(x,, x,,, )
e Top feature contributor
o LIME: large magnitude of B %
o xLIME: large magnitude of/ﬁkj‘ L X
e Top positive feature influencer
o LIME: large magnitude of /Skj
o xLIME: large magnitude of negative /3, or positive /Skj+
e Top negative feature influencer

o LIME: large magnitude of /;’kj
o xLIME: large magnitude of positive [g’kj‘ or negative /3kj+
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Localized Stratified Sampling: Idea

Method: Sampling based on empirical distribution around target value at each feature level

\ 3
target value=10098

A\

.‘\.

\

\
fo

\
ﬁ,{get value=45
\

/ .

f3

target value=10098

7

5\
N\
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Localized Stratified Sampling: Method

e Sampling based on empirical distribution around target value for each feature

e Fortarget sample x, = (x,,, x,,, ), sampling values of feature j according to

p,(X) - NG (@ 5))

P, (Xj) : empirical distribution.

X feature value in target sample.

S, standard deviation.

a . Interpretable range: tradeoff between interpretable coverage and local accuracy.

e InLIME, sampling according to N(x, sjz).

0O O O O
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Summary

trained
arget weight featurel feature2 feature3 model prediction
0.8 0.2 0.5 —— 0.76
sample
LIME pseudo 0.65 0.6 0.4 0.3 == 0.60
samples 0.6 11 0.3 0.8 == 0.86
O VAN (weighted) linear P
weights: W feature matrix: X % response: Y
trained
featurel feature2 feature3 prediction
target model
sample 0.8 0.2 0.5 —_ 0.76
pseudo 0.75 0.25 0.4 = 0.72
xLIME samples 0.9 0.22 0.55  —) 0.80
(Ioca.lized —
stratified O\ piecewise linear VAN
sampling)

feature matrix: X &9 response: Y
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LTS LCP (Linkedln Career Page) Upsell

e A subset of churn data

o Total Companies: ~ 19K
o Company features: 117

e Problem: Estimate whether there will be upsell given a set of features about
the company’s utility from the product
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Top Feature Contributor

Company : CompanyX

LIME
quantile | contribution
Q f9 45.0 98 -0.011
() f3 10097.6 66 0.011
o f10 16.5 94 0.010
XLIME

quantile | contribution

(o) f1 430.5 59 0.246
() f2 216.0 40 0.161
(o) f3 10097.6 66 0.084
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* Explanation curve: how classification performance varies if
one considers only the top ranked feature contributors

-8~ «LIME
- UME
075 —&— mndom

070

0 2 40 @ 20 100
number of top features
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Top Feature Influencers

Company: CompanyX

Positive influencer

Negative influencer

fl+ 430557123 7 .004 f1- 43051487 \,.004
LIME f2+ 216.0->435.4 ,.004 f2- 216.0-0.0 \,.004
’ f11 + 9.813.2  ,/.003 f11- 98563  \.003
, f5 + 0.0->5.4 ;‘:632” f1- 430.5->148.7 '\ .201
xLIME| f6 - 168.000 ,*.031 f2- 2160500 \,.174
| f7 + 0.00->0.24  *.016 fg - 423.0->146.0 \.071
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Key Takeaways

e Looking at the explanation as contributor vs. influencer features is useful

o  Contributor: Which features end-up in the current outcome case-by-case
o Influencer: What needs to be done to improve likelihood, case-by-case

e XLIME aims to improve on LIME via:

o Piecewise linear regression: More accurately describes local point, helps with finding correct
influencers
o Localized stratified sampling: More realistic set of local points

e Better captures the important features
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Case Study:
Relevance Debugging and Explaining @ Linked m

Daniel Qiu, Yucheng Qian
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Debugging Relevance Models

Modeling
Improve the machine
learning model

Value
Bring value to our members
by providing relevant
experience

Trust
Build trust with our members
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Architecture

frontend federator

@ shard #14

activities

203



What Could Go Wrong?

Stale data
|
shard #12
e e,
v
frontend ,u:shard #13
Bad feature quality chard #14

Feature online offline inconsistency activities

Service is down

Model A/B test issues
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Challenges

.— e )
I g T
Complex Infrastructure Hard to Reproduce Time Consuming
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Solution

esnw
ot .
.
o*
.
R3
*

members .

@

shard #12

Al engineer

Storage
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Call Graph

i - federator
i000 search

s granags- broker o a oyl Main Search Query
i000 (+) brokeéht000 (+)
® service returned status code soom

= 1 service: ag-paewary-broker

broker i000 requestld:-1974802163

server:  ®a! pptelal g Slasien. g
instance: i000

version: 0.3.223

Results Request Response Host Information Why Not Seen 0} Logs

@ FPR task(s) failed: 1

® Cannot adapt response from fpr, adapter: [ e =y (], Service: Fawrmsismmersr=w e |, ResourceMethod: FINDER, Cause: task: %
———— e a— | —— ———y WithTimeout 1000ms
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Total time (ms): 1041

I i m i n g Number of garbage collection events: 0

Start Time End Time Total Time Resent? Partitions Min Max p50 p90
search_phase_one 7 266 259 false 16 205 253 223.0 2455
facet_discovery 13 240 227 true 16 135 232 164.0 186.0
facet_count 262 1041 779 true 16 523 785 617.0 700.0
search_phase_two 266 274 8 false 15 b 9 8.0 9.0

Scatterplot of Searcher Response Time and Searcher Phase

800
@

700

oW ® @& @

500
400
300

‘ @
200

100

Searcher Response Time (ms)

0 ]

search_phase _one facet_discovery facet_count search_phase_two

Searcher Phase (categorical) 208



Features

Group Feature © Value
SPR activity_recent_click / 968
SPR TS N B N T T ey 1
SPR ETE NN O s S S S I e s 6.8762646
SPR NRE S El %5 =™ null
SPR R e null
SPR binary_activity_recent_click / | 1
SPR [ = B R S null
SPR log_activity_recent_click / 6.8762646
SPR O CEENT CE D 0
SPR —— . 0
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Advanced Use Cases

\\ I ./'
»’,’4-
N I N,

Perturbation Comparison

210



Perturbation

1. Inject

Injected as part of the
request

* Override A/B test settings
* Model selection

e Feature override

2. Relay

Passed to downstream
service

3. Overwrite

Overwrite the system
behavior
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Comparison

Compare Model Compare ltems

Compare results of 2 different Compare features and scores of 2 different

queries/models items, from the same query or different
queries
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Holistic Comparison

#1.1 - #1.4 BELNXEFLEY

Lead Software Engineer - Platform
Confidential

‘j #1.1 - #1.4 BRI

Lead Software Engineer - Platform
Confidential
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Granular Comparison

Feature © Item 1

responsePenalty / 4.0601455e-7

response 5.2125584e-9

score_response_viral 5.2125584e-9

Item 2

0.009018197

0.000011580406

0.000011580406

% Change ..

222105119

222063.57

222063.57
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Replay

Feed Replay cURL

Viewer ID

|( = . @|

@ Viewer ID must be a LinkedIn
employee.

Start Time (Pacific Time)
| 3012009 B H 0000 |

End Time (Pacific Time)

4012019 B [ 0000 ]

2

2019-03-26 13:12:30 PDT
Finder: UseCase
DESKTOP_HOMEPAGE_NEPTUNE

2019-03-26 17:12:48 PDT
Finder: UseCase
DESKTOP_HOMEPAGE_NEPTUNE

2019-03-27 17:49:32 PDT
Finder: UseCase

PHONE_HOMEPAGE VOYAGER 3

2019-03-27 17:56:05 PDT
Finder: UseCase
DESKTOP_HOMEPAGE_NEPTUNE

2019-03-27 18:28:51 PDT
Finder: UseCase
PHONE_HOMEPAGE VOYAGER

2019-03-27 18:28:51 PDT
Finder: UseCase

PHONE_HOMEPAGE VOYAGER

2019-03-28 10:12:35 PDT

Finder: UseCase 4

PHONE_HOMEPAGE VOYAGER

2019-03-29 16:32:18 PDT
Finder: UseCase
DESKTOP_HOMEPAGE_NEPTUNE

urn:li:activity o "l = - -

.- .llil

linkedin:group-post

urn:li:groupPost "'l B TR B W _§". WS

BEEERIERNGLIGE nus:homepage_federator_relevance_463_ramp

R RNOGEN m124_v2_multi_pass

urn:li:sponsoredContentV2:

(urn:li:activity mems ssw, o ow_ . == -

urn:li:sponsoredCreative.wm"s 8@ %))

Decorator for URN family unavailable

CEEVERICCRVGLE nus:homepage_federator_relevance_463_ramp

EBRVLIEE su:2700601;pc:sc_003!100000;

urn:liactivity: @ © §® T @ Ef wa

[ ]
El >

linkedin:like

urn:li:activity 8= BN L™ N

REEERRNGLGIEN nus:homepage_federator_relevance_463_ramp

ERRNGEEN m124_v2_multi_pass

urn:li:activity ™l B el ™

Emn '_ L
linkedin:react

B urn:li:groupPostsm = s mm = == ms

Relevance Model:

TEE E

mepage_federator_relevance_463_ramp

Details

Details

Details

Details

Callitree not available

Features

Features

Features

Features

Traces

Traces

Traces

Traces
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Teams

Search

Feed

Comments

People you may know

Jobs you may be interested in
Notification

216



Case Study:

Building an Explainable Al Engine @ @ fiddler
Luke Merrick

217



Fiddler's Explainable Al Engine

Mission: Unlock Trust, Visibility and Insights by making Al Explainable in every enterprise

All your data

-

1
NETSUITE
Google Analytics

Amazon S3

S o e

Google b
BigQuery X1 snowflake

J

Any data warehouse

@ fiddler

Custom Models

% TensorFlow

O PyTorch

Amazon SageMaker

AN

J

=

Fiddler Modeling Layer

Explainable Al for everyone

v




Example: Credit Lending in a black-box ML world

[ ] . .
ﬁ Credit Line Increase Bank Query Al System Credit Lending Model

L
? 111

Request Denied - Credit Lending Score = 0.3
2

Why? Why not? How?

Fair lending laws [ECOA, FCRA] require credit decisions to be explainable



Explain individual predictions (using Shapley Values)

[ compis How Can This Help...

New Credit
Predictions > Instance
e, Customer Support
credit_aprv| ! Explaination Type Local Interpretability v
LR 03y eeemmentee @ e Why was a customer loan
rejected?
e O P Iy - ter = +1.0%) e
negativ 0.5 0 0.5 (-
FICO 790 % (+ _
—J o Bias & Fairness
Salary 89,000 21.5% (+) - . .
2 How is my model doing
Credit Requested 9,000 % (+! .
e o (D across demographics?
Ea\‘jssets 204,000 9.3% (+) -
Debt to Income Ratio 0.38 2% (+
J 5.2% (+) .

ZipCode 27101 v - 5.6% () Lendlng LOB

School Salem College v |l o What Varla.bleS should they
validate with customers on
“borderline” decisions?




Explain individual predictions (using Shapley Values)

New Credit

Predictions > Instance

x ZipCode
School

credit.aprvl (.3 ! explaination Type @

1
____________ '

u alie (5
FICO 790
-

Salary 89,000
4

Credit Requested 9,000

-\J

Total Assets 204,000

—J

Debt to Income Ratio 0.38

®

ZipCode 27101 v

School Salem College v
27101 v

Salem College v

Local Interpretabiity v

Prediction Impact 4  (Filter = +1.0%) -

negative 0.5 0

20 ) (D
21.5% (+) _
15.3% (+) -

9.3% (+) -

5.2% (+) .

- 5.6% (-)

Audit Complete

positive

How Can This Help...

Customer Support
Why was a customer loan
rejected?

Bias & Fairness
How is my model doing
across demographics?

Lending LOB

What variables should they
validate with customers on
“borderline” decisions?



Explain individual predictions (using Shapley Values)

New Credit
Predicti Instance
(,___________f\
|| creditaprvl Q.3 : Explaination Type () Local Interpretability
l; ___________ '
e O
gativ
FICO 790
Probe the —
d I -t Salary 89,000
Credit Requested 9,000
counterfactuals —J
Total Assets 204,000
—J
Debt to Income Ratio 0.38
®
[ zipcoa 27101 v
1
i 1
_--7 '\ School Salem College v
, L S i S
4
/
/
1
|4
27101 v

X ZipCode
School

Salem College v

0
2o (D
21.5% (+) _
15.3% (+) -

9.3% (+) -

- 5.6% (-)

Audit Complete

How Can This Help...

Customer Support

Why was a customer loan
rejected?

Bias & Fairness
How is my model doing
across demographics?

Lending LOB

What variables should they
validate with customers on
“borderline” decisions?



Integrating explanations

Debt Consolidation Loan debticonsolidation How Can This He|p

Need this loan for credit card debt consolidation!!! The fixed rate on this loan will help bring multiple payments to only one lower monthly payment.
Customer Support
Request Location Repayment Model Why was a customer Ioan

ONIARTY QUEBEC I'ejeCted7
Repayment probability:

ra
La

@ Fiddler Explanations Why was the credit card limit

S

e A
TH /\
OTA m NB
Montreal | BE

Powered by @@ fiddler

( 1
1 1
1 1
1 1
1 1
MINNESOTA L Ottawa : Model Feature Value Feature Impact : | OW7
ITH WISCONSIN | /77 MAINES | 0\A'SCOTIA H h ‘
pra MICHIGAN) Oronty o | loan_amnt 8250 42% |
Chicago P /—)NEW VORKHIR ! P !
RASKA, 4 oA G e CTRI 1 pub_rec_bankruptcies 1 -3% ! . .
MIERE S BFCHT S, D . - Why was this transaction
tates o i (< AT | home_ownership MORTGAGE 13% |
TR0 - eont wEsTe ! | marked as fraud?
KENTUCKY/“VIRGINIA 1 emp_length 10+ years 3% 1
OKLAHOMA TENNESSEE NOR{ik, ! !
ARKANSAS CAROLAA : annual_inc 50000 -15% :
Dallas MISSISSIPPI SOUmk
) Y I e e : revol_bal 4544 7% :
EXAS ! GEORGIA + | - 1
roy LR 1 revol_util 79.7 -16% !
Houston 1 1
A FLORIDA - : deling_2yrs 0 2% :
\
Dogle G ol Map data ©2020 Google, INEGI  Terms of Use : :
1 1
1 1
1 1

Record ID: 6 Next




Slice & Explain

Insights (2 Share

(™ sQL QUERY [ lending | () DEMO-Lending (Amit) | 8 | Format m |4 EXPLANATION “FAdd
.
EXAMPLES : [ mpact %, 1D = 37742142 b Feature Correlation HOW Can ThIS Help...

example dataset query: — I
select * from "your_dataset_name" limit 100 -

-

g

3

:

E e oot qury: e [ @ e ) Global Explanations
8

9

Feature Distribution

select * from "your_dataset_name.your_model_name" limit 100
x/ m probability_c.. 0.201 = | Fiddler SHAP ~ | TopNinputs 5 c
iz ! Wh he pri f
10 SLICE * from "p2p_loans.logreg-all" il 1 at are t € prlmary eature
11\ where "loan_amnt" < 10000 Ready int_rate \ .
B | drivers of the dataset on my
= 1
I ?
____________________________________ > a del?
0 pATA | 2'2“, I : moae
! ;
1 id  loan_amnt int_rate sub_grade emp_length home_ownership annual.inc issue.d loan_status I
. annual_inc :
1 37742142 2000 1499 C5 8years RENT 32200 2014-12:01 Fully Paid o I R . E I t.
T P ! €gion explanations
3 Explain 37612112 6000 1199 85 2years RENT 42000 2014-12:01 Fully Paid a’jjﬂs‘m B : HOW doeS my model perform
4 Explain 37731824 7000 11.99 BS 1 year RENT 45000 2014-12-01 Fully Paid 1 . .
R R TR : on a certain slice? Where
B 670 1
Expl: 37761762 8250 5.59 D1 4 RENT 23000 2014-12-01 Ch: d
. | i does the model not perform
7 Explain 37781367 3000 1550 D1 10+years  OWN 45000 20141201 Fully Paid ]
o P e e F well? Is my model uniformly
9 Explain 37631470 6725 0.49 B3 MORTGAGE 19164 2014-12-01 Fully Paid H H
_ fair across slices?
10 Explain 37711640 6000 949 B2 2 years MORTGAGE 115000 2014-12-01 Fully Paid [ Impact
1 Explain 37651617 6000 8.19 A5 3years MORTGAGE 90000 2014-12-01 Fully Paid
Top N Inputs 10
12 Explain 37771625 7150 17.14 D4 <1 year RENT 30000 2014-12-01 Fully Paid
13 Explain ik " IR benr oo oo o - )

I 4% )

-
[SEE




Model Monitoring: Feature Drift

probability_charged_off ~ One Week -

1st-99th Percentile

Prediction Trend 2

= Median 25th-75th Percentile

5
2 .
= $
= et
S 4
z &
= i
: B
5
s .
14

Time

Time slice

ort Value ~ Vi 5 v Compare Feature Distribution 2

=== Production === Training

int_rate
[
/“\ / A
\
&

/
/

sub_grade
[
[ A\
z y
" [

emp_length
[

Feature distribution for
time slice relative to
training distribution

rrrrrrrrr

0.5 0.6 0.7 0.8 0.9 1
int_rate

Drift Score

Investigate Data Drift Impacting Model Performance



Model Monitoring: Outliers with Explanations

New Credit °

Monitoring

Model

TxnRisk_ResNet50 ¥

Dashboard Models

Feature

credit_aprvl x

Deployment

Filter

0.6

credit aprvl

o
1
I 12722
1
1
1
1
1 -,
i FICO
1
1
o 790
1
1
Il 765
1
\4
2 755

Monitoring  Analytics

4 anomalies

Explanation
Start 14 days ago
End 7 days ago

o e o0 o 00_o0 o
® %% % oo O
°
°
° ° °
® o ° o e ©
° ° ° oY &2
° Y o ©
- o e-0ge g:®
o % _o ° °
° e o %o ° . °
°
_-->0e [ ®
12/23 12/24 12/25
Time

Salary Credit_Request Total_Assets Debt_Income Zipcode

89,000 9,000 204,000 0.38 94056

75,656 14,750 124,000 0.25 55455

65,340 5,650 175,350 0.29 60456

56,550 1,200 79,5600 0.42 80044

L
Documentation () “Accuum

Individual
Explanations

Howard University

L]
000 0o, °
[ ]
°
o [ ]
LY [
° [ ]
12/26
School credit_aprvl
Salem College 0.3
Salem College 0.24
Salem College 0.27
0.21

12/27

Explain

YExplain

Explain

How Can This Help...

Operations

Why are there outliers in
model predictions? What
caused model performance
to go awry?

Data Science
How can | improve my ML
model? Where does it not do

well?



Some lessons learned at Fiddler

e Attributions are contrastive to their baselines
e Explaining explanations is important (e.g. good Ul)

e |n practice, we face engineering challenges as much as
theoretical challenges
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Recap

Part I: Introduction and Motivation
o  Motivation, Definitions & Properties

o Evaluation Protocols & Metrics

Part Il: Explanation in Al (not only Machine Learning!)

o From Machine Learning to Knowledge Representation and Reasoning and Beyond

Part lll: Explainable Machine Learning (from a Machine Learning Perspective)
Part IV: Explainable Machine Learning (from a Knowledge Graph Perspective)

Part V: XAl Tools on Applications, Lessons Learnt and Research Challenges
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Challenges & Tradeoffs

e Lack of standard interface for ML models

makes pluggable explanations hard S_E

e Explanation needs vary depending on the type
of the user who needs it and also the problem Fairness Performance

at hand.

e The algorithm you employ for explanations

might depend on the use-case, model type,

?
i
e There are trade-offs w.r.t. Explainability, Transparency User Privacy

Performance, Fairness, and Privacy.

data format, etc.
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Explainability in ML: Broad Challenges

Actionable explanations
Balance between explanations & model secrecy

Robustness of explanations to failure modes (Interaction between ML
components)

Application-specific challenges
Conversational Al systems: contextual explanations
Gradation of explanations

Tools for explanations across Al lifecycle
Pre & post-deployment for ML models
Model developer vs. End user focused



Thanks! Questions?

e Feedback most welcome :-)

o freddy.lecue@inria.fr, krishna@fiddler.ai, sgeyik@linkedin.com,
kenthk@amazon.com, vamithal@linkedin.com, ankur@fiddler.ai,

luke@fiddler.ai, p.minervini@ucl.ac.uk, riccardo.quidotti@unipi.it

e Tutorial website: https://xaitutorial2020.qgithub.io

e To try Fiddler, please send an email to info@fiddler.ai

e To try Thales XAl Platform, please send an email to freddy.lecue@thalesgroup.com

ThaLes | ycy [/t | @ § aws

INVENTEURS DU MONDE NUM ERIQUE
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Case Study:

Linked [} Talent Platform
“Diversity Insights and Fairness-Aware Ranking”

Sahin Cem Geyik, Krishnaram Kenthapadi
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“Diversity by Design” in LinkedIn’s Talent Solutions

m

HIRE DEVELOP

N N
Insights to Representative Diversity
|dentify Diverse Talent Search Learning

Talent Pools Results Curriculum



Plan for Diversity
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Plan for Diversity

M rAaLenT INSIGHTS FOLDERS [Createreport ¥ [

SHOWING DATA FOR Flexis [ Add to folder
Company 7.136 employees on Linkedin
INCLUDE at least one of the
. Overview Location Titles Talent flow Attrition Skills Education Profiles Gender
Flexis 4
£ Select an industry to compare with: Internet ¥
Location +
How diverse is your workforce compared with industry? ves
Function +
Data on this page is based on US member data.
Your workforce Internet
There is 94% coverage of your US workforce
Title + ® 34% female ® 40% female based on our inferred gender data
® 66% male ® 60% male
Skill +
Employment type + . . —— 5 .
How is each function’s gender diversity compared with the Internet industry? ® sen
Function (23) C Employees . oFemale C eMale T A Industry Gendergap C
User Experience Design 5,743 ?3% ‘ 78‘% 56%
Sales 4377 3?% ‘ 70‘% 40%
Information Technology 2,298 2/8% ‘ 73‘% 44%
Business Development 1,603 3“5% ‘ 6(5)% 30%
Marketing 921 A% ‘ 46,% 8%




ldentify Diverse Talent Pools
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Region (100) T Professionals Jobs C Hiring demand C Female . Top employers
_ 835 5 W
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Inclusive Job Descriptions / Recruiter Outreach

PBOARDS JOBS REPORTS MORE

Summary Usage Pipline Jobs InMail

Showing data for: Last 7 days ¥ Last updated April 6th, 10:00AM

340

Response rate

Explore the data

ir InMail data t

Search spotlights

Gender

Female

Male

93

Messages sent

pL
Accepted

16

No Response

Oct 16 Oct 25

Seats Companies Schools Time in role

Response rate

56%

48%

Template

Add filters

55
Opened

14

Declined

Gender



Representative Ranking for Talent Search

(Y recruiter PROJECTS CLIPBOARD JOBS REPORTS

S. C. Geyik, S. Ambler,

HOWING DATA F( 1,767,429 216,022 161,354
T total candidats iy | ‘ K. Kenthapadi, Fairness-Aware
INCLUDE at least one of the following s Whas Ranking in Segrch & .
User Experience Designer @ Recommendat|0n SVStemS W|th
More Application to LinkedIn Talent

Product Designer

Search, KDD’19.

Interaction Designer  + Carl Meyer
e More [Microsoft's Al/ML
skl * — conference
Q - (MLADS'18). Distinguished
Location ‘ A .

Mor Contribution Award]

INCLUDE at least e of the f

’

Talent Search at LinkedIn
ot S (LinkedIn engineering blog)

Industry +

4'
United States + Ray Patterson
Exclude Q > ‘ ; Building Representative

Employment type +


http://www-cs-students.stanford.edu/~kngk/papers/fairnessAwareRankingInSearchAndRecommendationSystemsWithApplicationToLinkedInTalentSearch-KDD2019.pdf
http://www-cs-students.stanford.edu/~kngk/papers/fairnessAwareRankingInSearchAndRecommendationSystemsWithApplicationToLinkedInTalentSearch-KDD2019.pdf
http://www-cs-students.stanford.edu/~kngk/papers/fairnessAwareRankingInSearchAndRecommendationSystemsWithApplicationToLinkedInTalentSearch-KDD2019.pdf
http://www-cs-students.stanford.edu/~kngk/papers/fairnessAwareRankingInSearchAndRecommendationSystemsWithApplicationToLinkedInTalentSearch-KDD2019.pdf
http://www-cs-students.stanford.edu/~kngk/papers/fairnessAwareRankingInSearchAndRecommendationSystemsWithApplicationToLinkedInTalentSearch-KDD2019.pdf

Intuition for Measuring and Achieving Representativeness

|ldeal: Top ranked results should follow a desired distribution on
gender/age/...
E.g., same distribution as the underlying talent pool

Inspired by “Equal Opportunity” definition [Hardt et al, NIPS’16]

Defined measures (skew, divergence) based on this intuition



Desired Proportions within the Attribute of Interest

Compute the proportions of the values of the attribute (e.g., gender,
gender-age combination) amongst the set of qualified candidates

“Qualified candidates” = Set of candidates that match the
search query criteria
Retrieved by LinkedIn’s Galene search engine

Desired proportions could also be obtained based on legal
mandate / voluntary commitment



Fairness-aware Reranking Algorithm (Simplified)

Partition the set of potential candidates into different buckets for
each attribute value

Rank the candidates in each bucket according to the scores
assigned by the machine-learned model

Merge the ranked lists, balancing the representation requirements
and the selection of highest scored candidates
Representation requirement: Desired distribution on gender/age/...
Algorithmic variants based on how we achieve this balance



Validating Our Approach

Gender Representativeness

Over 95% of all searches are representative compared to the
qualified population of the search

Business Metrics

. A/B test over Linkedln Recruiter users for two weeks

No significant change in business metrics (e.g., # InMails sent
or accepted)

Ramped to 100% of LinkedIn Recruiter users worldwide



. Post-processing approach desirable
|  Model agnostic

» Scalable across different model choices
for our application

3 * Acts as a “fail-safe”
» Robust to application-specific business
Lessons 5 logic
« Easier to incorporate as part of existing

| e a r n e d systems

 Build a stand-alone service or component
for post-processing

* No significant modifications to the existing
components

« Complementary to efforts to reduce bias from
training data & during model training

» Collaboration/consensus across key stakeholders




Engineering for Fairness in Al Lifecycle

Does the model encourage

feedback loops that can Feedback >

produce increasingly unfair
outcomes?{
Are we deploying our model
on a population that we did

not train/test on? Deployment
Are there unequal effects
across users? }*
Have we evaluated the model Testing
using relevant fairness Process
metrics?

% Training
Process

Problem
Formation

A

problem?

A

Dataset

Is an algorithm an
ethical solution to our

Does our data include enough
minority samples?

Are there missing/biased

Construction  features?

4

Algorithm
Selection

Do we need to apply debiasing
algorithms to preprocess our
data?

Do we need to include fairness
constraints in the function?

Credit: K. Browne & J. Draper



Fairness Privacy

Related AAAI’'20 sessions:

1.Tutorial: Fairness-Aware Machine Learning: Practical Challenges and Lessons Learned (Sun)
2.Workshop: Explainable Al/ML (XAl) for Accountability, Fairness, and Transparency (Mon)
3.Social Impact Workshop (Wed, 8:15 — 11:45)

4.Keynote: Cynthia Rudin, Do Simpler Models Exist and How Can We Find Them? (Thu, 8 - 9am)
5.Several papers on fairness (e.g., ADS7 (Thu, 10-12), ADS9 (Thu, 1:30-3:30))

6.Research Track Session RT17: Interpretability (Thu, 10am - 12pm)

Transparenc Explainability


https://sites.google.com/view/kdd19-fairness-tutorial
https://xai.kdd2019.a.intuit.com/

Algorithmic Bias

Ethical challenges posed by Al
systems

Inherent biases present in
society
- Reflected in training data

- Al/ML models prone to
amplifying such biases
ACM FAT™ conference /

KDD’16 & NeurlPS’17
Tutorials

Image results:
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hair for work"
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Example: Facebook adds Explainable Al to build Trust

Why Am | Seeing This? We Have an
Answer for You

‘ \ Why You're Seeing This Post

You're friends with Eric Cheng
Your friend since May 2008

I & ... You're amember of Woofers and Puppers

Member since April 2012

N —— y You've liked Eric Cheng's posts more
than posts from others

You've commented on posts with
photos more than other media types

% This post in Woofers and Puppers is
‘ popular compared to other posts
you've seen

Other factors also influence the order S
of posts. Learn More




Axioms

e Insensitivity: A variable that has no effect on the output gets no attribution

e Sensitivity: If baseline and input differ in a single variable, and have different
outputs, then that variable should receive some attribution

e Linearity preservation: Attributions(a*F1 + 3*F2) = a*Attributions(F1) +
R*Attributions(F2)

e Implementation invariance: Two networks that compute identical functions for
all inputs get identical attributions

e Completeness: Sum(attributions) = F(input) - F(baseline)

e Symmetry: Symmetric variables with identical values get equal attributions



