
Explainable AI in Industry
AAAI 2020 Tutorial

Freddy Lecue, Krishna Gade, Sahin Cem Geyik, 
Krishnaram Kenthapadi, Varun Mithal, Ankur Taly, 

Riccardo Guidotti, Pasquale Minervini

https://xaitutorial2020.github.io 1

https://xaitutorial2020.github.io


Outline

2



Agenda
● Part I: Introduction and Motivation

○ Motivation, Definitions, Properties, Evaluation 

○ Challenges for Explainable AI @ Scale

● Part II: Explanation in AI (not only Machine Learning!)

○ From Machine Learning to Knowledge Representation and Reasoning and Beyond

● Part III: Explainable Machine Learning (from a Machine Learning Perspective)

● Part IV: Explainable Machine Learning (from a Knowledge Graph Perspective)

● Part V: Case Studies from Industry

○ Applications, Lessons Learned, and Research Challenges
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Scope
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AI Adoption: Requirements



Introduction and Motivation
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Explanation - From a Business Perspective
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Business to Customer AI



Critical Systems (1)



Critical Systems (2)



 COMPAS recidivism black bias 

… but not only Critical Systems (1)



▌

… but not only Critical Systems (2)
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… but not only Critical Systems (3)



Black-box AI creates business risk for Industry



Internal Audit, Regulators

IT & Operations

Data Scientists

Business Owner

Can I trust our AI 
decisions? 

Are these AI system 
decisions fair?

Customer Support

How do I answer this 
customer complaint?

How do I monitor and 
debug this model?

Is this the best model 
that can be built?

Black-box 
AI

Why I am getting this 
decision?

How can I get a 
better decision?

Poor Decision

Black-box AI creates confusion and doubt



Explanation - From a Model Perspective
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Why Explainability: Debug (Mis-)Predictions

17

Top label: “clog”

Why did the network label this 
image as “clog”?
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Why Explainability: Improve ML Model

Credit: Samek, Binder, Tutorial on Interpretable ML, MICCAI’18



Why Explainability: Verify the ML Model / System 
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Credit: Samek, Binder, Tutorial on Interpretable ML, MICCAI’18
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Why Explainability: Learn New Insights

Credit: Samek, Binder, Tutorial on Interpretable ML, MICCAI’18



21

Why Explainability: Learn Insights in the Sciences

Credit: Samek, Binder, Tutorial on Interpretable ML, MICCAI’18



Explanation - From a Regulatory Perspective
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Citizenship

Disability statusRace

AgeSex

And more...

Why Explainability: Laws against Discrimination
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GDPR Concerns Around Lack of Explainability in AI

“
Companies should commit to ensuring 
systems that could fall under GDPR, including 
AI, will be compliant. The threat of sizeable 
fines of €20 million or 4% of global turnover 
provides a sharp incentive.

Article 22 of GDPR empowers individuals with 
the right to demand an explanation of how 
an AI system made a decision that affects 
them. 

 ”
- European Commision

VP, European Commision
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Why Explainability: Growing Global AI Regulation

● GDPR: Article 22 empowers individuals with the right to demand an explanation of how an 
automated system made a decision that affects them. 

● Algorithmic Accountability Act 2019: Requires companies to provide an assessment of the risks posed by 
the automated decision system to the privacy or security and the risks that contribute to inaccurate, unfair, 
biased, or discriminatory decisions impacting consumers 

● California Consumer Privacy Act: Requires companies to rethink their approach to capturing, 
storing, and sharing personal data to align with the new requirements by January 1, 2020.

● Washington Bill 1655: Establishes guidelines for the use of automated decision systems to protect 
consumers, improve transparency, and create more market predictability.

● Massachusetts Bill H.2701: Establishes a commission on automated decision-making, 
transparency, fairness, and individual rights.

● Illinois House Bill 3415: States predictive data analytics determining creditworthiness or hiring 
decisions may not include information that correlates with the applicant race or zip code.
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SR 11-7 and OCC regulations for Financial Institutions



Model Diagnostics
Root Cause Analytics

Performance monitoring
Fairness monitoring

Model Comparison
Cohort Analysis

Explainable Decisions
API  Support

Model Launch Signoff
Model Release Mgmt

Model Evaluation
Compliance Testing

Model Debugging
Model Visualization

Explainable 
AI

       Train

  QA             

          Predict

         Deploy

            A/B Test

            Monitor

        Debug

Feedback Loop

“Explainability by Design” for AI products



AI @ Scale - Challenges for Explainable AI

31



LinkedIn operates the largest professional 
network on the Internet

645M+ members

30M+ 
companies are 
represented 
on LinkedIn

90K+ 
schools listed 
(high school & 
college)

35K+ 
skills listed

20M+ 
open jobs 
on LinkedIn 
Jobs

280B 
Feed updates
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Explanation - In a Nutshell
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What is Explainable AI?

Data
Black-Box 

AI
AI product

Confusion with Today’s AI Black 
Box

● Why did you do that?
● Why did you not do that? 
● When do you succeed or fail? 
● How do I correct an error?

Black Box AI 

Decision, 
Recommendation

Clear & Transparent Predictions

● I understand why
● I understand why not
● I know why you succeed or fail
● I understand, so I trust you

Explainable AI

Data Explainable 
AI

Explainable 
AI Product

Decision

Explanation

Feedback



Humans may have follow-up questions

Explanations cannot answer all users’ concerns

Example of an End-to-End XAI System



Neural Net

CNNGAN

RNN
Ensemble

Method

Random
Forest

XGB

Statistical
Model

AOG
SVM

Graphical Model

Bayesian 
Belief Net

SLR

CRF HBN
MLN

Markov 
Model

Decision 
Tree

Linear 
Model

•
•
•

•
•
•

•

•
•

How to Explain? Accuracy vs. Explainability



Oxford Dictionary of 
English

XAI Definitions - Explanation vs. Interpretation



Text

On the Role of Data in XAI



Evaluation (1) - Perturbation-based Approaches

https://sites.google.com/view/kdd19-explainable-ai-tutorial


Evaluation criteria for Explanations [Miller, 2017]
○ Truth & probability

○ Usefulness, relevance

○ Coherence with prior belief

○ Generalization

Cognitive chunks = basic explanation units (for different explanation needs)
○ Which basic units for explanations?

○ How many?

○ How to compose them?

○ Uncertainty & end users?

Evaluation (2) - Human (Role)-based Evaluation is 
Essential… but too often based on size!



Evaluation (3) - XAI: One Objective, Many Metrics



Explanation in AI (not only Machine Learning!)
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XAI: One Objective, Many ‘AI’s, Many Definitions, Many Approaches
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XAI: One Objective, Many ‘AI’s, Many Definitions, Many Approaches



•
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Overview of Explanation in Machine Learning (1)



Overview of Explanation in Machine Learning (2)

● Artificial Neural Network



Overview of Explanation in Machine Learning (3)

● Computer Vision



Overview of Explanation in Different AI Fields (1)

● Game Theory



Overview of Explanation in Different AI Fields (1)

● Game Theory
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Overview of Explanation in Different AI Fields (1)

● Game Theory



•

Overview of Explanation in Different AI Fields (2)
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Overview of Explanation in Different AI Fields (3)
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Overview of Explanation in Different AI Fields (3)



● Multi-agent Systems

•

Overview of Explanation in Different AI Fields (4)



● Multi-agent Systems
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● Multi-agent Systems
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Overview of Explanation in Different AI Fields (4)
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Overview of Explanation in Different AI Fields (5)
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Overview of Explanation in Different AI Fields (5)
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Overview of Explanation in Different AI Fields (5)



● Planning and Scheduling

•

Overview of Explanation in Different AI Fields (6)



● Planning and Scheduling

•

Overview of Explanation in Different AI Fields (6)
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Overview of Explanation in Different AI Fields (7)



Overview of Explanation in Different AI Fields (7)

•



•

Overview of Explanation in Different AI Fields (8)



Explainable Machine Learning 

(from a Machine Learning Perspective)

78



Achieving Explainable AI
Approach 1: Post-hoc explain a given AI model

● Individual prediction explanations in terms of input features, influential examples, 
concepts, local decision rules

● Global prediction explanations in terms of entire model in terms of partial 
dependence plots, global feature importance, global decision rules

Approach 2: Build an interpretable model

● Logistic regression, Decision trees, Decision lists and sets, Generalized Additive 
Models (GAMs)
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Slide credit: https://twitter.com/chandan_singh96/status/1138811752769101825

Integrated
Gradients



Achieving Explainable AI
Approach 1: Post-hoc explain a given AI model

● Individual prediction explanations in terms of input features, influential examples, 
concepts, local decision rules

● Global prediction explanations in terms of entire model in terms of partial 
dependence plots, global feature importance, global decision rules

Approach 2: Build an interpretable model

● Logistic regression, Decision trees, Decision lists and sets, Generalized Additive 
Models (GAMs)
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Top label: “clog”

Why did the network label this 
image as “clog”?
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Top label: “fireboat”

Why did the network label this 
image as “fireboat”?
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Credit Line Increase 

Fair lending laws [ECOA, FCRA] require credit decisions to be explainable 

Bank Credit Lending Model

Why? Why not? 
How?

?
     

Request Denied

Query AI System

Credit Lending Score = 0.3

Credit Lending in a black-box ML world



Attribute a model’s prediction on an input to features of the input

Examples:

● Attribute an object recognition network’s prediction to its pixels

● Attribute a text sentiment network’s prediction to individual words

● Attribute a lending model’s prediction to its features

A reductive formulation of “why this prediction” but surprisingly useful

The Attribution Problem



Application of Attributions
● Debugging model predictions

E.g., Attribution an image misclassification to the pixels responsible for it

● Generating an explanation for the end-user
E.g., Expose attributions for a lending prediction to the end-user

● Analyzing model robustness
E.g., Craft adversarial examples using weaknesses surfaced by attributions

● Extract rules from the model
E.g., Combine attribution to craft rules (pharmacophores) capturing prediction 
logic of a drug screening network 
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Next few slides

We will cover the following attribution methods**

● Ablations

● Gradient based methods (specific to differentiable models)

● Score Backpropagation based methods (specific to NNs)

We will also discuss game theory (Shapley value) in attributions

**Not a complete list!
   See Ancona et al. [ICML 2019], Guidotti et al. [arxiv 2018] for a comprehensive survey
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Ablations
Drop each feature and attribute the change in prediction to that feature

Pros:

● Simple and intuitive to interpret

Cons:

● Unrealistic inputs

● Improper accounting of interactive features

● Can be computationally expensive
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Feature*Gradient

Attribution to a feature is feature value times gradient, i.e., xi* 𝜕y/𝜕xi

● Gradient captures sensitivity of output w.r.t. feature

● Equivalent to Feature*Coefficient for linear models

○ First-order Taylor approximation of non-linear models

● Popularized by SaliencyMaps [NIPS 2013], Baehrens et al. [JMLR 2010]

89

Gradients in the 
vicinity of the input 
seem like noise?



Local linear approximations can be too local

90

score

“fireboat-ness” of image

Interesting gradients
uninteresting gradients
        (saturation)

1.0

0.0



Score Back-Propagation based Methods

Re-distribute the prediction score through the neurons in the network

● LRP [JMLR 2017], DeepLift [ICML 2017], Guided BackProp [ICLR 2014]

Easy case: Output of a neuron is a linear function 
of previous neurons (i.e., ni = ⅀ wij * nj)
e.g., the logit neuron

● Re-distribute the contribution in proportion to 
the coefficients wij

91
Image credit heatmapping.org



Score Back-Propagation based Methods

Re-distribute the prediction score through the neurons in the network

● LRP [JMLR 2017], DeepLift [ICML 2017], Guided BackProp [ICLR 2014]

Tricky case: Output of a neuron is a non-linear 
function, e.g., ReLU, Sigmoid, etc.

● Guided BackProp: Only consider ReLUs that 
are on (linear regime), and which contribute 
positively

● LRP: Use first-order Taylor decomposition to 
linearize activation function

● DeepLift: Distribute activation difference 
relative a reference point in proportion to 
edge weights

rib

92
Image credit heatmapping.org



Score Back-Propagation based Methods

Re-distribute the prediction score through the neurons in the network

● LRP [JMLR 2017], DeepLift [ICML 2017], Guided BackProp [ICLR 2014]

Pros:
● Conceptually simple
● Methods have been empirically validated to 

yield sensible result 

Cons:
● Hard to implement, requires instrumenting 

the model
● Often breaks implementation invariance

 Think: F(x, y, z) = x * y *z  and
            G(x, y, z) = x * (y * z)Image credit heatmapping.org



Baselines and additivity

● When we decompose the score via backpropagation, we imply a normative 
alternative called a baseline

○ “Why Pr(fireboat) = 0.91 [instead of 0.00]”

● Common choice is an informationless input for the model

○ E.g., Black image for image models

○ E.g., Empty text or zero embedding vector for text models

● Additive attributions explain F(input) - F(baseline) in terms of input features



score

intensity

Interesting gradients
uninteresting gradients
        (saturation)

1.0

0.0

Baseline … scaled inputs ...

… gradients of scaled inputs ….

Input

Another approach: gradients at many points



IG(input, base) ::=  (input - base) * ∫0 -1▽F(𝛂*input + (1-𝛂)*base) d𝛂

Original image Integrated Gradients

Integrated Gradients [ICML 2017]

Integrate the gradients along a straight-line path from baseline to input



Integrated Gradients in action
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Original image “Clog”

Why is this image labeled as “clog”?



Original image Integrated Gradients
(for label “clog”)

“Clog”

Why is this image labeled as “clog”?



Detecting an architecture bug
● Deep network [Kearns, 2016] predicts if a molecule binds to certain DNA site

● Finding: Some atoms had identical attributions despite different connectivity



● Deep network [Kearns, 2016] predicts if a molecule binds to certain DNA site

● Finding: Some atoms had identical attributions despite different connectivity

Detecting an architecture bug

● Bug: The architecture had a bug due to which the convolved bond features 
did not affect the prediction!



● Deep network predicts various diseases from chest x-rays

Original image
Integrated gradients

(for top label)

Detecting a data issue



● Deep network predicts various diseases from chest x-rays

● Finding: Attributions fell on radiologist’s markings (rather than the pathology)

Original image
Integrated gradients

(for top label)

Detecting a data issue



Cooperative game theory in attributions

104



Classic result in game theory on distributing gain in a coalition game

● Coalition Games

○ Players collaborating to generate some gain (think: revenue)

○ Set function v(S) determining the gain for any subset S of players

Shapley Value [Annals of Mathematical studies,1953]



Classic result in game theory on distributing gain in a coalition game

● Coalition Games

○ Players collaborating to generate some gain (think: revenue)

○ Set function v(S) determining the gain for any subset S of players

● Shapley Values are a fair way to attribute the total gain to the players based on 
their contributions

○ Concept: Marginal contribution of a player to a subset of other players (v(S U {i}) - v(S))

○ Shapley value for a player is a specific weighted aggregation of its marginal over all 
possible subsets of other players

Shapley Value for player i = ⅀S⊆N  w(S) * (v(S U {i}) - v(S))    

(where w(S) = N! / |S|! (N - |S| -1)!) 

Shapley Value [Annals of Mathematical studies, 1953]



Shapley values are unique under four simple axioms

● Dummy: If a player never contributes to the game then it must receive zero attribution

● Efficiency: Attributions must add to the total gain

● Symmetry: Symmetric players must receive equal attribution

● Linearity: Attribution for the (weighted) sum of two games must be the same as the 
(weighted) sum of the attributions for each of the games

Shapley Value Justification



SHAP [NeurIPS 2018], QII [S&P 2016], Strumbelj & Konenko [JMLR 2009]

● Define a coalition game for each model input X

○ Players are the features in the input

○ Gain is the model prediction (output), i.e., gain = F(X)

● Feature attributions are the Shapley values of this game

Shapley Values for Explaining ML models



SHAP [NeurIPS 2018], QII [S&P 2016], Strumbelj & Konenko [JMLR 2009]

● Define a coalition game for each model input X

○ Players are the features in the input

○ Gain is the model prediction (output), i.e., gain = F(X)

● Feature attributions are the Shapley values of this game

Challenge: Shapley values require the gain to be defined for all subsets of players

● What is the prediction when some players (features) are absent?

       i.e., what is F(x_1, <absent>, x_3, …, <absent>)?

Shapley Values for Explaining ML models



Key Idea: Take the expected prediction when the (absent) feature is sampled from 
a certain distribution. 

Different approaches choose different distributions

● [SHAP, NIPS 2018] Use conditional distribution w.r.t. the present features

● [QII, S&P 2016] Use marginal distribution

● [Strumbelj et al., JMLR 2009] Use uniform distribution

Modeling Feature Absence

Preprint: The Explanation Game: Explaining Machine Learning Models with Cooperative Game 
Theory 

https://arxiv.org/abs/1909.08128
https://arxiv.org/abs/1909.08128


Exact Shapley value computation is exponential in the number of features

● Shapley values can be expressed as an expectation of marginals

𝜙(i) = ES ~ D  [marginal(S, i)]

● Sampling-based methods can be used to approximate the expectation

● See: “Computational Aspects of Cooperative Game Theory”, Chalkiadakis et al. 2011

● The method is still computationally infeasible for models with hundreds of 
features, e.g., image models

Computing Shapley Values



● Values of Non-Atomic Games (1974): Aumann and Shapley extend their 
method → players can contribute fractionally

● Aumann-Shapley values calculated by integrating along a straight-line path… 
same as Integrated Gradients!

● IG through a game theory lens: continuous game, feature absence is modeled 
by replacement with a baseline value

● Axiomatically justified as a result: 

○ Integrated Gradients is the unique path-integral method satisfying: Sensitivity, Insensitivity, 
Linearity preservation, Implementation invariance, Completeness, and Symmetry

Non-atomic Games: Aumann-Shapley Values and IG



Baselines (or Norms) are essential to explanations  [Kahneman-Miller 86]

● E.g., A man suffers from indigestion. Doctor blames it to a stomach ulcer. Wife blames 
it on eating turnips. Both are correct relative to their baselines.

● The baseline may also be an important analysis knob.

Attributions are contrastive, whether we think about it or not.

Lessons learned: baselines are important

https://pdfs.semanticscholar.org/9809/8ee48700173e2f09aeff48c406ef943918b5.pdf


Some limitations and caveats for attributions



Some things that are missing:

● Feature interactions (ignored or averaged out)

● What training examples influenced the prediction (training agnostic)

● Global properties of the model (prediction-specific)

An instance where attributions are useless:

● A model that predicts TRUE when there are even number of black pixels and 
FALSE otherwise

Attributions don’t explain everything



Attributions are for human consumption

Naive scaling of attributions 
from 0 to 255

Attributions have a large 
range and long tail 
across pixels

After clipping attributions 
at 99% to reduce range

● Humans interpret attributions and generate insights

○ Doctor maps attributions for x-rays to pathologies

● Visualization matters as much as the attribution technique



Other individual prediction explanation methods



Local Interpretable Model-agnostic Explanations 
(Ribeiro et al. KDD 2016) 

118

Figure credit: Anchors: High-Precision Model-Agnostic 
Explanations. Ribeiro et al. AAAI 2018

Figure credit: Ribeiro et al. KDD 2016



Anchors

119
Figure credit: Anchors: High-Precision Model-Agnostic Explanations. Ribeiro et al. AAAI 2018



Influence functions

● Trace a model’s prediction through the learning algorithm and 
back to its training data

● Training points “responsible” for a given prediction

120
Figure credit: Understanding Black-box Predictions via Influence Functions. Koh and Liang. ICML 2017



Example based Explanations

121

● Prototypes: Representative of all the training data. 

● Criticisms: Data instance that is not well represented by the set of prototypes.

Figure credit: Examples are not Enough, Learn to Criticize! Criticism for Interpretability. Kim, Khanna and Koyejo. NIPS 2016

 Learned prototypes and criticisms from Imagenet dataset (two types of dog breeds)



Global Explanations
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Global Explanations Methods

● Partial Dependence Plot: Shows 
the marginal effect one or two features 
have on the predicted outcome of a 
machine learning model 
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Global Explanations Methods

● Permutations: The importance of a feature is the increase in the prediction error of the model 
after we permuted the feature’s values, which breaks the relationship between the feature and the 
true outcome.
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Achieving Explainable AI
Approach 1: Post-hoc explain a given AI model

● Individual prediction explanations in terms of input features, influential examples, 
concepts, local decision rules

● Global prediction explanations in terms of entire model in terms of partial 
dependence plots, global feature importance, global decision rules

Approach 2: Build an interpretable model

● Logistic regression, Decision trees, Decision lists and sets, Generalized Additive 
Models (GAMs)
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Decision Trees
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Is the person fit?

Age < 30 ?

Eats a lot of pizzas? Exercises in the morning?

Unfit UnfitFit Fit

Yes No

Yes
Yes No

No



Decision Set

127
Figure credit: Interpretable Decision Sets: A Joint Framework for Description and Prediction, Lakkaraju, Bach, 
Leskovec



Decision Set

128



Decision List

129
Figure credit: Interpretable Decision Sets: A Joint Framework for Description and Prediction, Lakkaraju, Bach, 
Leskovec



Falling Rule List
A falling rule list is an ordered list of if-then rules (falling rule lists are a type of 
decision list), such that the estimated probability of success decreases 
monotonically down the list. Thus, a falling rule list directly contains the 
decision-making process, whereby the most at-risk observations are classified 
first, then the second set, and so on. 

130



Box Drawings for Rare Classes

131
Figure credit: Box Drawings for Learning with Imbalanced. Data Siong Thye Goh and Cynthia Rudin



Supersparse Linear Integer Models for Optimized 
Medical Scoring Systems 

Figure credit: Supersparse Linear Integer Models for Optimized Medical Scoring Systems. Berk Ustun and Cynthia Rudin
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K- Nearest Neighbors

133

Explanation in terms of nearest training 
data points responsible for the decision



GLMs and GAMs

134

Intelligible Models for Classification and Regression. Lou, Caruana and Gehrke KDD 2012

Accurate Intelligible Models with Pairwise Interactions. Lou, Caruana, Gehrke and Hooker. KDD 2013



Explainable Machine Learning 

(from a Knowledge Graph Perspective)

135Freddy Lécué: On the role of knowledge graphs in 
explainable AI. Semantic Web 11(1): 41-51 (2020)
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Knowledge Graph (1)

Freddy Lécué: On the role of knowledge graphs in 
explainable AI. Semantic Web 11(1): 41-51 (2020)
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Knowledge Graph (2)

Freddy Lécué: On the role of knowledge graphs in 
explainable AI. Semantic Web 11(1): 41-51 (2020)
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Knowledge Graph Construction

Freddy Lécué: On the role of knowledge graphs in 
explainable AI. Semantic Web 11(1): 41-51 (2020)



Knowledge Graph in Machine Learning (1)

Freddy Lécué: On the role of knowledge graphs in 
explainable AI. Semantic Web 11(1): 41-51 (2020)

https://stats.stackexchange.com/questions/230581/decision-tree-too-large-to-interpret
https://stats.stackexchange.com/questions/230581/decision-tree-too-large-to-interpret


Knowledge Graph in Machine Learning (2)

Freddy Lécué: On the role of knowledge graphs in 
explainable AI. Semantic Web 11(1): 41-51 (2020)

https://stats.stackexchange.com/questions/230581/decision-tree-too-large-to-interpret
https://stats.stackexchange.com/questions/230581/decision-tree-too-large-to-interpret
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Training 
Data

Input
(unlabeled 

image)

Neurons respond 
to simple shapes

Neurons respond to 
more complex 

structures

Neurons respond to 
highly complex, 

abstract concepts

1st Layer

2nd Layer

nth Layer

Low-level 
features to 
high-level 
features 

Knowledge Graph in Machine Learning (3)

Freddy Lécué: On the role of knowledge graphs in 
explainable AI. Semantic Web 11(1): 41-51 (2020)
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Training 
Data

Input
(unlabeled 

image)

Neurons respond 
to simple shapes

Neurons respond to 
more complex 

structures

Neurons respond to 
highly complex, 

abstract concepts

1st Layer

2nd Layer

nth Layer

Low-level 
features to 
high-level 
features 

Knowledge Graph in Machine Learning (4)

Freddy Lécué: On the role of knowledge graphs in 
explainable AI. Semantic Web 11(1): 41-51 (2020)
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Knowledge Graph in Machine Learning (5)

Freddy Lécué: On the role of knowledge graphs in 
explainable AI. Semantic Web 11(1): 41-51 (2020)
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Knowledge Graph in Machine Learning (6)





















After Human Reasoning…







•

•





Knowledge Graph in Machine Learning - An Implementation



XAI Tools on Applications, 

Lessons Learnt 

and Research Challenges
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https://docs.google.com/file/d/1F117aAoNk7MQMC52B6FL5-xErkj3ruA2/preview


Challenge: Object detection is usually performed from a 
large portfolio of Artificial Neural Networks (ANNs) 
architectures trained on large amount of labelled data. 
Explaining object detections is rather difficult due to the 
high complexity of the most accurate ANNs.

AI Technology: Integration of AI related technologies 
i.e., Machine Learning (Deep Learning / CNNs), and 
knowledge graphs / linked open data.

XAI Technology: Knowledge graphs and Artificial Neural 
Networks

Explainable Boosted Object Detection – Industry Agnostic



Context 

● Explanation in Machine Learning systems has been identified to be 
the one asset to have for large scale deployment of Artificial 
Intelligence (AI) in critical systems

● Explanations could be example-based (who is similar), features-based 
(what is driving decision), or even counterfactual (what-if scenario) to 
potentially action on an AI system; they could be represented in many 
different ways e.g., textual, graphical, visual 

Goal

● All representations serve different means, purpose and operators. We 
designed the first-of-its-kind XAI platform for critical systems i.e., the 
Thales Explainable AI Platform which aims at serving explanations 
through various forms 

Approach: Model-Agnostic

● [AI:ML] Grad-Cam, Shapley, Counter-factual, Knowledge graph



https://docs.google.com/file/d/1zoKidieGH5zaahOn8ekXXBo74BEeZvc-/preview


Challenge: Designing Artificial Neural Network 
architectures requires lots of experimentation 
(i.e., training phases) and parameters tuning 
(optimization strategy, learning rate, number of 
layers…) to reach optimal and robust machine 
learning models.

AI Technology: Artificial Neural Network

XAI Technology: Artificial Neural Network, 3D 
Modeling and Simulation Platform For AI

Debugging Artificial Neural Networks – Industry Agnostic



https://docs.google.com/file/d/1ZTwndNzC9bN9ouP9cjjuXcyzZ3OYIcgU/preview


Challenge: Public transportation is getting more and more 
self-driving vehicles. Even if trains are getting more and more 
autonomous, the human stays in the loop for critical decision, 
for instance in case of obstacles. In case of obstacles trains 
are required to provide recommendation of action i.e., go on 
or go back to station. In such a case the human is required to 
validate the recommendation through an explanation exposed 
by the train or machine.

AI Technology: Integration of AI related technologies i.e., 
Machine Learning (Deep Learning / CNNs), and semantic 
segmentation.

XAI Technology: Deep learning and Epistemic uncertainty

Obstacle Identification Certification (Trust) - Transportation



Challenge: Predicting and explaining 
aircraft engine performance

AI Technology: Artificial Neural Networks

XAI Technology: Shapely Values

Explaining Flight Performance- Transportation



Challenge: Globally 323,454 flights are delayed every year. 
Airline-caused delays totaled 20.2 million minutes last year, 
generating huge cost for the company. Existing in-house 
technique reaches 53% accuracy for predicting flight delay, 
does not provide any time estimation (in minutes as opposed 
to True/False) and is unable to capture the underlying 
reasons (explanation). 

AI Technology: Integration of AI related technologies i.e., 
Machine Learning (Deep Learning / Recurrent neural 
Network), Reasoning (through semantics-augmented 
case-based reasoning) and Natural Language Processing for 
building a robust model which can (1) predict flight delays in 
minutes, (2) explain delays by comparing with historical 
cases.

XAI Technology: Knowledge graph embedded Sequence 
Learning using LSTMs

Explainable On-Time Performance - Transportation



Challenge: Accenture is managing every year more than 
80,000 opportunities and 35,000 contracts with an expected 
revenue of $34.1 billion. Revenue expectation does not 
meet estimation due to the complexity and risks of critical 
contracts. This is, in part, due to the (1) large volume of 
projects to assess and control, and (2) the existing 
non-systematic assessment process.

AI Technology: Integration of AI technologies i.e., Machine 
Learning, Reasoning, Natural Language Processing for 
building a robust model which can (1) predict revenue loss, 
(2) recommend corrective actions, and (3) explain why such 
actions might have a positive impact.

XAI Technology: Knowledge graph embedded Random 
Forrest

Copyright © 2017 Accenture. All rights reserved.

Explainable Risk Management - Finance



Challenge: Predicting and explaining abnormally employee expenses (as high accommodation price in 1000+ cities).

AI Technology: Various techniques have been matured over the last two decades to achieve excellent results. However most methods address the problem 
from a statistic and pure data-centric angle, which in turn limit any interpretation. We elaborated a web application running live with real data from (i) travel and 
expenses from Accenture, (ii) external data from third party such as Google Knowledge Graph, DBPedia (relational DataBase version of Wikipedia) and social 
events from Eventful, for explaining abnormalities. 

XAI Technology: Knowledge graph embedded Ensemble Learning

Explainable Anomaly Detection – Finance (Compliance)



Counterfactual Explanations for Credit Decisions (3) - Finance



Challenge: Explaining medical condition relapse in the 
context of oncology.

AI Technology: Relational learning

XAI Technology: Knowledge graphs and Artificial Neural 
Networks

Explanation of Medical Condition Relapse – Health 



Case Study: 

                      Talent Search

     Varun Mithal, Girish Kathalagiri, Sahin Cem Geyik
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LinkedIn Recruiter

● Recruiter Searches for Candidates
○ Standardized and free-text search criteria

● Retrieval and Ranking
○ Filter candidates using the criteria
○ Rank candidates in multiple levels using ML 

models
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Modeling Approaches

● Pairwise XGBoost
● GLMix
● DNNs via TensorFlow

● Optimization Criteria: inMail Accepts
○ Positive: inMail sent by recruiter, and positively responded by candidate

■ Mutual interest between the recruiter and the candidate
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Feature Importance in XGBoost
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How We Utilize Feature Importances for GBDT

● Understanding feature digressions
○ Which a feature that was impactful no longer is?
○ Should we debug feature generation?

● Introducing new features in bulk and identifying effective ones
○ An activity feature for last 3 hours, 6 hours, 12 hours, 24 hours introduced (costly to compute)
○ Should we keep all such features?

● Separating the factors for that caused an improvement
○ Did an improvement come from a new feature, or a new labeling strategy, data source?
○ Did the ordering between features change?

● Shortcoming: A global view, not case by case
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GLMix Models

● Generalized Linear Mixed Models
○ Global: Linear Model
○ Per-contract: Linear Model
○ Per-recruiter: Linear Model

● Lots of parameters overall
○ For a specific recruiter or contract the weights can be summed up

● Inherently explainable
○ Contribution of a feature is “weight x feature value”
○ Can be examined in a case-by-case manner as well
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TensorFlow Models in Recruiter and Explaining Them

● We utilize the Integrated Gradients [ICML 2017] method

● How do we determine the baseline example?
○ Every query creates its own feature values for the same candidate
○ Query match features, time-based features
○ Recruiter affinity, and candidate affinity features
○ A candidate would be scored differently by each query
○ Cannot recommend a “Software Engineer” to a search for a “Forensic Chemist”
○ There is no globally neutral example for comparison!
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Query-Specific Baseline Selection

● For each query:
○ Score examples by the TF model
○ Rank examples
○ Choose one example as the baseline
○ Compare others to the baseline example

● How to choose the baseline example
○ Last candidate
○ Kth percentile in ranking
○ A random candidate
○ Request by user (answering a question like: “Why was I presented candidate x above 

candidate y?”)
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Example

182



Example - Detailed
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Feature Description Difference (1 vs 2) Contribution

Feature………. Description………. -2.0476928 -2.144455602

Feature………. Description………. -2.3223877 1.903594618

Feature………. Description………. 0.11666667 0.2114946752

Feature………. Description………. -2.1442587 0.2060414469

Feature………. Description………. -14 0.1215354111

Feature………. Description………. 1 0.1000282466

Feature………. Description………. -92 -0.085286277

Feature………. Description………. 0.9333333 0.0568533262

Feature………. Description………. -1 -0.051796317

Feature………. Description………. -1 -0.050895940



Pros & Cons

● Explains potentially very complex models
● Case-by-case analysis

○ Why do you think candidate x is a better match for my position?
○ Why do you think I am a better fit for this job?
○ Why am I being shown this ad?
○ Great for debugging real-time problems in production

● Global view is missing
○ Aggregate Contributions can be computed
○ Could be costly to compute

184



Lessons Learned and Next Steps

● Global explanations vs. Case-by-case Explanations
○ Global gives an overview, better for making modeling decisions
○ Case-by-case could be more useful for the non-technical user, better for debugging

● Integrated gradients worked well for us
○ Complex models make it harder for developers to map improvement to effort
○ Use-case gave intuitive results, on top of completely describing score differences

● Next steps
○ Global explanations for Deep Models
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Case Study: 

Model Interpretation for Predictive Models in B2B 
Sales Predictions

Jilei Yang, Wei Di, Songtao Guo
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Problem Setting
● Predictive models in B2B sales prediction

○ E.g.: random forest, gradient boosting, deep neural network, …
○ High accuracy, low interpretability

● Global feature importance  →  Individual feature reasoning
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Example
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Revisiting LIME
● Given a target sample 𝑥𝑘, approximate its prediction 𝑝𝑟𝑒𝑑(𝑥𝑘) by building a 

sample-specific linear model:

𝑝𝑟𝑒𝑑(𝑋) ≈ 𝛽𝑘1 𝑋1 + 𝛽𝑘2 𝑋2 + …, 𝑋 ∈ 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟(𝑥𝑘)
● E.g., for company CompanyX: 

0.76 ≈  1.82 ∗ 0.17    + 1.61 ∗ 0.11+…
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xLIME

Piecewise Linear 
Regression

Localized Stratified 
Sampling
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Piecewise Linear Regression
Motivation: Separate top positive feature influencers and top negative feature influencers
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Impact of Piecewise Approach
● Target sample 𝑥𝑘=(𝑥𝑘1, 𝑥𝑘2, ⋯)
● Top feature contributor

○ LIME: large magnitude of 𝛽𝑘𝑗 ⋅ 𝑥𝑘𝑗
○ xLIME: large magnitude of 𝛽𝑘𝑗

− ⋅ 𝑥𝑘𝑗
● Top positive feature influencer

○ LIME: large magnitude of 𝛽𝑘𝑗
○ xLIME: large magnitude of negative 𝛽𝑘𝑗

− or positive 𝛽𝑘𝑗
+

● Top negative feature influencer
○ LIME: large magnitude of 𝛽𝑘𝑗
○ xLIME: large magnitude of positive 𝛽𝑘𝑗

− or negative 𝛽𝑘𝑗
+
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Localized Stratified Sampling: Idea
Method: Sampling based on empirical distribution around target value at each feature level
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Localized Stratified Sampling: Method

● Sampling based on empirical distribution around target value for each feature
● For target sample 𝑥𝑘 = (𝑥𝑘1 , 𝑥𝑘2 , ⋯), sampling values of feature 𝑗 according to

𝑝𝑗 (𝑋𝑗) ⋅ 𝑁(𝑥𝑘𝑗 , (𝛼 ⋅ 𝑠𝑗 )
2)

○ 𝑝𝑗 (𝑋𝑗) : empirical distribution.
○ 𝑥𝑘𝑗 : feature value in target sample.
○ 𝑠𝑗 : standard deviation.
○ 𝛼 : Interpretable range: tradeoff between interpretable coverage and local accuracy.

● In LIME, sampling according to 𝑁(𝑥𝑗
 , 𝑠𝑗

2).
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Summary
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LTS LCP (LinkedIn Career Page) Upsell

● A subset of churn data
○ Total Companies: ~ 19K
○ Company features: 117

● Problem: Estimate whether there will be upsell given a set of features about 
the company’s utility from the product
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Top Feature Contributor
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Top Feature Influencers
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Key Takeaways

● Looking at the explanation as contributor vs. influencer features is useful
○ Contributor: Which features end-up in the current outcome case-by-case
○ Influencer: What needs to be done to improve likelihood, case-by-case

● xLIME aims to improve on LIME via:
○ Piecewise linear regression: More accurately describes local point, helps with finding correct 

influencers
○ Localized stratified sampling: More realistic set of local points

● Better captures the important features
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Case Study: 

Relevance Debugging and Explaining @ 

Daniel Qiu, Yucheng Qian
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Debugging Relevance Models
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Architecture
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What Could Go Wrong?
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Challenges
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Solution
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Call Graph
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Timing
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Features
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Advanced Use Cases
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Perturbation
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Comparison
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Holistic Comparison
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Granular Comparison
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Replay
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Teams

● Search
● Feed
● Comments
● People you may know
● Jobs you may be interested in
● Notification
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Case Study: 

Building an Explainable AI Engine @ 

Luke Merrick
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All your data

Any data warehouse

Custom Models

Fiddler Modeling Layer

Explainable AI for everyone

APIs, Dashboards, Reports, Trusted Insights 

Fiddler’s Explainable AI Engine
Mission: Unlock Trust, Visibility and Insights by making AI Explainable in every enterprise



Credit Line Increase 

Fair lending laws [ECOA, FCRA] require credit decisions to be explainable 

Bank Credit Lending Model

Why? Why not? How?

?
     

Request Denied

Query AI System

Credit Lending Score = 0.3

Example: Credit Lending in a black-box ML world



How Can This Help…

Customer Support
Why was a customer loan 
rejected?

Bias & Fairness
How is my model doing 
across demographics?

Lending LOB
What variables should they 
validate with customers on 
“borderline” decisions?

Explain individual predictions (using Shapley Values)



How Can This Help…

Customer Support
Why was a customer loan 
rejected?

Bias & Fairness
How is my model doing 
across demographics?

Lending LOB
What variables should they 
validate with customers on 
“borderline” decisions?

Explain individual predictions (using Shapley Values)



How Can This Help…

Customer Support
Why was a customer loan 
rejected?

Bias & Fairness
How is my model doing 
across demographics?

Lending LOB
What variables should they 
validate with customers on 
“borderline” decisions?

Explain individual predictions (using Shapley Values)

Probe the 
model on 
counterfactuals



How Can This Help…

Customer Support
Why was a customer loan 
rejected?

Why was the credit card limit 
low?

Why was this transaction 
marked as fraud?

Integrating explanations



How Can This Help…

Global Explanations
What are the primary feature 
drivers of the dataset on my 
model? 

Region Explanations
How does my model perform 
on a certain slice? Where 
does the model not perform 
well? Is my model uniformly 
fair across slices?

Slice & Explain



Model Monitoring: Feature Drift

Investigate Data Drift Impacting Model Performance

Time slice

Feature distribution for 
time slice relative to 
training distribution



How Can This Help…

Operations
Why are there outliers in 
model predictions? What 
caused model performance 
to go awry? 

Data Science
How can I improve my ML 
model? Where does it not do 
well? 

Model Monitoring: Outliers with Explanations

Outlier

Individual 
Explanations



Some lessons learned at Fiddler

● Attributions are contrastive to their baselines

● Explaining explanations is important (e.g. good UI)

● In practice, we face engineering challenges as much as 
theoretical challenges
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Recap
● Part I: Introduction and Motivation

○ Motivation, Definitions & Properties 

○ Evaluation Protocols & Metrics

● Part II: Explanation in AI (not only Machine Learning!)

○ From Machine Learning to Knowledge Representation and Reasoning and Beyond

● Part III: Explainable Machine Learning (from a Machine Learning Perspective)

● Part IV: Explainable Machine Learning (from a Knowledge Graph Perspective)

● Part V: XAI Tools on Applications, Lessons Learnt and Research Challenges

228



Challenges & Tradeoffs 

229

User PrivacyTransparency

Fairness Performance

?
     

● Lack of standard interface for ML models 

makes pluggable explanations hard

● Explanation needs vary depending on the type 

of the user who needs it and also the problem 

at hand.

● The algorithm you employ for explanations 

might depend on the use-case, model type, 

data format, etc.

● There are trade-offs w.r.t. Explainability, 

Performance, Fairness, and Privacy. 



Explainability in ML: Broad Challenges

Actionable explanations

Balance between explanations & model secrecy

Robustness of explanations to failure modes (Interaction between ML 
components)

Application-specific challenges
Conversational AI systems: contextual explanations
Gradation of explanations

Tools for explanations across AI lifecycle
Pre & post-deployment for ML models
Model developer vs. End user focused



Thanks! Questions?
● Feedback most welcome :-)

○ freddy.lecue@inria.fr, krishna@fiddler.ai, sgeyik@linkedin.com, 
kenthk@amazon.com,  vamithal@linkedin.com, ankur@fiddler.ai,
luke@fiddler.ai,  p.minervini@ucl.ac.uk, riccardo.guidotti@unipi.it

● Tutorial website: https://xaitutorial2020.github.io

● To try Fiddler, please send an email to info@fiddler.ai

● To try Thales XAI Platform , please send an email to freddy.lecue@thalesgroup.com

231https://xaitutorial2020.github.io 231
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Appendix



Case Study: 

                      Talent Platform

“Diversity Insights and Fairness-Aware Ranking”

     Sahin Cem Geyik, Krishnaram Kenthapadi
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Guiding Principle: 
“Diversity by Design”



“Diversity by Design” in LinkedIn’s Talent Solutions











Representative Ranking for Talent Search

S. C. Geyik, S. Ambler, 
K. Kenthapadi, Fairness-Aware 
Ranking in Search & 
Recommendation Systems with 
Application to LinkedIn Talent 
Search, KDD’19.

[Microsoft’s AI/ML 
conference 
(MLADS’18). Distinguished 
Contribution Award]

Building Representative 
Talent Search at LinkedIn 
(LinkedIn engineering blog)

http://www-cs-students.stanford.edu/~kngk/papers/fairnessAwareRankingInSearchAndRecommendationSystemsWithApplicationToLinkedInTalentSearch-KDD2019.pdf
http://www-cs-students.stanford.edu/~kngk/papers/fairnessAwareRankingInSearchAndRecommendationSystemsWithApplicationToLinkedInTalentSearch-KDD2019.pdf
http://www-cs-students.stanford.edu/~kngk/papers/fairnessAwareRankingInSearchAndRecommendationSystemsWithApplicationToLinkedInTalentSearch-KDD2019.pdf
http://www-cs-students.stanford.edu/~kngk/papers/fairnessAwareRankingInSearchAndRecommendationSystemsWithApplicationToLinkedInTalentSearch-KDD2019.pdf
http://www-cs-students.stanford.edu/~kngk/papers/fairnessAwareRankingInSearchAndRecommendationSystemsWithApplicationToLinkedInTalentSearch-KDD2019.pdf


Intuition for Measuring and Achieving Representativeness

Ideal: Top ranked results should follow a desired distribution on 
gender/age/…

E.g., same distribution as the underlying talent pool

Inspired by “Equal Opportunity” definition [Hardt et al, NIPS’16]

Defined measures (skew, divergence) based on this intuition



Desired Proportions within the Attribute of Interest

Compute the proportions of the values of the attribute (e.g., gender, 
gender-age combination) amongst the set of qualified candidates

● “Qualified candidates” = Set of candidates that match the 
search query criteria

● Retrieved by LinkedIn’s Galene search engine

Desired proportions could also be obtained based on legal 
mandate / voluntary commitment



Fairness-aware Reranking Algorithm (Simplified)

Partition the set of potential candidates into different buckets for 
each attribute value

Rank the candidates in each bucket according to the scores 
assigned by the machine-learned model

Merge the ranked lists, balancing the representation requirements 
and the selection of highest scored candidates

Representation requirement: Desired distribution on gender/age/…
Algorithmic variants based on how we achieve this balance



Validating Our Approach

Gender Representativeness
● Over 95% of all searches are representative compared to the 

qualified population of the search

Business Metrics
● A/B test over LinkedIn Recruiter users for two weeks
● No significant change in business metrics (e.g., # InMails sent 

or accepted)

Ramped to 100% of LinkedIn Recruiter users worldwide



• Post-processing approach desirable
• Model agnostic

• Scalable across different model choices 
for our application

• Acts as a “fail-safe”
• Robust to application-specific business 

logic
• Easier to incorporate as part of existing 

systems
• Build a stand-alone service or component 

for post-processing
• No significant modifications to the existing 

components
• Complementary to efforts to reduce bias from 

training data & during model training

• Collaboration/consensus across key stakeholders



Purpose of Layout: Highlight a key percentage statistic

Pro tip: Don’t use “Big idea statements” sequentially.

Engineering for Fairness in AI Lifecycle

Problem 
Formation

Dataset 
Construction

Algorithm 
Selection 

Training 
Process

Testing 
Process

Deployment

Feedback
Is an algorithm an 
ethical solution to our 
problem?

Does our data include enough 
minority samples? 

Are there missing/biased 
features?

Do we need to apply debiasing 
algorithms to preprocess our 
data?

Do we need to include fairness 
constraints in the function?

Have we evaluated the model 
using relevant fairness 

metrics?

Are we deploying our model 
on a population that we did 

not train/test on?

Are there unequal effects 
across users?

Does the model encourage 
feedback loops that can 

produce increasingly unfair 
outcomes? 

Credit: K. Browne & J. Draper
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https://sites.google.com/view/kdd19-fairness-tutorial
https://xai.kdd2019.a.intuit.com/


▪ Ethical challenges posed by AI 
systems

▪ Inherent biases present in 
society

– Reflected in training data

– AI/ML models prone to 
amplifying such biases

▪ ACM FAT* conference / 
KDD’16 & NeurIPS’17 
Tutorials

Algorithmic Bias
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Example: Facebook adds Explainable AI to build Trust



Axioms
● Insensitivity: A variable that has no effect on the output gets no attribution

● Sensitivity: If baseline and input differ in a single variable, and have different 
outputs, then that variable should receive some attribution

● Linearity preservation: Attributions(ɑ*F1 + ß*F2) = ɑ*Attributions(F1) + 
ß*Attributions(F2)

● Implementation invariance: Two networks that compute identical functions for 
all inputs get identical attributions 

● Completeness: Sum(attributions) = F(input) - F(baseline)

● Symmetry: Symmetric variables with identical values get equal attributions


